工作汇报网 >地图 >汇报资料 >

圆与方程课件

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为id="article-content1">

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为$0\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值$2a$,其中$a$为长轴的长度。
- 椭圆的离心率小于$1$,当离心率等于$0$时椭圆退化为一个点,当离心率等于$1$时椭圆退化为一个由两个焦点组成的线段,当离心率大于$1$时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html

\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值a$,其中$a$为长轴的长度。
- 椭圆的离心率小于

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为$0\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值$2a$,其中$a$为长轴的长度。
- 椭圆的离心率小于$1$,当离心率等于$0$时椭圆退化为一个点,当离心率等于$1$时椭圆退化为一个由两个焦点组成的线段,当离心率大于$1$时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html

上一页:早安媳妇问候语(集锦五十七句) $,当离心率等于id="article-content1">

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为$0\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值$2a$,其中$a$为长轴的长度。
- 椭圆的离心率小于$1$,当离心率等于$0$时椭圆退化为一个点,当离心率等于$1$时椭圆退化为一个由两个焦点组成的线段,当离心率大于$1$时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html

$时椭圆退化为一个点,当离心率等于

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为$0\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值$2a$,其中$a$为长轴的长度。
- 椭圆的离心率小于$1$,当离心率等于$0$时椭圆退化为一个点,当离心率等于$1$时椭圆退化为一个由两个焦点组成的线段,当离心率大于$1$时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html

上一页:早安媳妇问候语(集锦五十七句) $时椭圆退化为一个由两个焦点组成的线段,当离心率大于

圆与方程课件(合集十七篇)_圆与方程课件

时间:2022-12-09 作者:工作汇报网

圆与方程课件(合集十七篇)。

◆ 圆与方程课件

椭圆是几何中比较基础的一个图形,在数学中有着广泛的应用。椭圆的标准方程是一条方程,它能够完全描述一个椭圆的几何特性。在本文中,我将介绍椭圆的标准方程及其相关的数学知识。

椭圆是一个平面上的图形,它是由所有到两个定点距离之和等于一定值的点所构成的。这两个定点称为椭圆的焦点,它们都在椭圆的长轴上。椭圆的中心也位于长轴上,同时也是两个焦点的中点。长轴对应的长度称为椭圆的长轴,短轴对应的长度称为椭圆的短轴。椭圆的离心率定义为焦点距离与长轴长度的比值。

椭圆的标准方程为:

$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$

其中,$a$和$b$分别是椭圆的长轴和短轴的长度,$(h,k)$是椭圆的中心坐标。通过这个方程,我们可以计算出椭圆上的任意一个点的坐标。

椭圆的标准方程有一些重要的性质。首先,椭圆的中心坐标为$(h,k)$,它是标准方程中 $(x-h)^2$ 和 $(y-k)^2$ 的系数。其次,离心率$e=\sqrt{1-\frac{b^2}{a^2}}$ 决定了椭圆的形状。当离心率为零时,椭圆变成一个圆;当离心率为一时,椭圆变成一个抛物线。最后,椭圆的周长和面积可以通过长轴和短轴的长度计算出来。

在解决实际问题时,椭圆的标准方程可以发挥重要的作用。例如,在计算电子轨道和空间天体轨道时,经常需要使用椭圆的标准方程。在工程设计和图像处理中,椭圆也有很多应用。

总之,椭圆的标准方程是研究椭圆性质的基础,它可以描述椭圆的形状、大小和位置等重要特征。通过学习这个方程,我们可以更好地理解和应用椭圆,为实际问题的解决提供帮助。

◆ 圆与方程课件

(一)说教材

1、教材结构编排:

本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标

知识目标:

(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

(2)已知圆心和半径会写出圆的标准方程、

能力目标:

(1)培养学生数形结合能力、

(2)培养学生应用数学知识解决实际问题的能力

情感目标:

(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点

(1)圆的标准方程

(2)已知圆的标准方程会写出圆的圆心和半径

(3)已知圆心坐标和半径会写出圆的标准方程

4、教学难点

(1)圆的标准方程的推导

(2)圆的标准方程的应用

(二)说教法

本节课采用讲练结合,启发式教学

(三)说学法

1、 主动探究学习

2、 小组合作学习

(四)说教学过程

1、导入

通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接

(1)圆的定义,圆上的点具备的特征性质

(2)平面上两点间的距离公式

通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习

(1)推导圆的标准方程(化解难点)

怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)

先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

(4)小结本节的重点知识

(5)根据所学为了加强巩固,适当的布置作业

(五)说板书设计

正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

◆ 圆与方程课件

今天,我们的数学老师略带怒气地走进教室。原因是大家数学书上有道题目难倒了班中的大部分同学,究竟是“何方神圣”打倒了众人,让我们一起来探究探究吧!

首先是题目:某汽车车轮直径为0、5米,汽车行驶至1千米车轮大约转了几圈(结果保留两位小数)。

大家猜猜看,同学们会出现哪些错误呢?

首先,最容易的错误就是单位问题,0·5米与1千米中的米和千米不是同一个单位,不能直接计算。然后米到千米的进率是1000、可0、5米已经是小数了,所以换算1千米比较合适,接着就是:1千米=1000米。

其次是更加深奥的地方:大家会用1000米去除以0·5米,可这样真的对了吗?不,你错了!来翻译翻译同学们的算式:在这段长1000米的距离中有几段轮胎直径?可这与题目完全不同!直径的运动我们可以称之为平移,而轮胎的运动是旋转,所以这样是错误的。

之后老师让我们先个人思考,接着在小组讨论上说说自己的想法,最后便是汇报。经过全班人的努力,终于得出了正解:1000÷(0、5×3、14)≈637(圈)下面我们对这种算法做—步—步讲解:首先理解题意,求1千米车轮大约转了几圈就是求1000米中有几个轮胎的周长;接着列算式:0、5×3、14表示的是轮胎滚动一圈的距离,1000÷(0、5×3、14)表示1000米长的距离轮胎要滚几圈。

题目的正解终于浮出水面啦!

◆ 圆与方程课件

圆标准方程的教学设计

教材分析

本节内容位于曲线方程和方程之后,即求方程具体曲线。同时,本课的研究方法为今后椭圆、双曲线、抛物线的研究提供了基本模型。因此,圆可以看作是圆锥曲线的前奏。学习情况分析

圆方程是在学生在初中学习圆的概念和基本性质后,掌握了求曲线方程的一般方法的基础上进行的。时间不长,学习水平比较浅,对坐标法的使用不够熟练,学习过程中难免会出现困难。此外,还需要加强学生探索问题的能力和合作沟通意识。教学方法分析

为充分调动学生的学习积极性,本课采用“问题-探究”教学法,采用环环相扣的问题深化探究活动,让教师始终站在学生思维的最近点。在开发区。研究方法分析

通过推导圆的标准方程,加深对坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件,才能确定一个圆。通过应用圆的标准方程,我熟悉了用待定系数法求解的过程。根据以上分析,考虑到学生现有的认知结构和心理特点,我制定如下教学目标: 教学目标

基本目标:(1)理解a的标准方程的推导圆圈;

(2)掌握圆的标准方程。根据圆的方程,他可以找到圆的圆心和半径;相反,他会根据圆心和半径写出圆的标准方程;一些简单的实际问题;

(4)比较熟悉求曲线方程的方法。

提高目标:培养学生从特殊到一般的数学思维;加深对固定系数处理方法的理解;促进学生自主和创造性的学习。

体验目标:学会运用所学知识分析和解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,激发学生学习数学的自信心。

教学要点和难点

(1) 要点:求圆标准方程的方法及其应用。 (2)难点:可以根据不同已知条件求圆的标准方程

教学过程

1。点评介绍

1.课前复习并填写学习案例(学习案例见附录)

老师问:①求曲线方程的一般步骤

②圆的定义

③两点之间的距离公式

p>

学生回答问题,准备推导圆的标准方程。

2.创建场景介绍新课

教师准备一个圆拱形模型和一个卡车模型,用于卡车通过拱桥的实验。

老师问:载货的卡车能过拱桥吗?有那些因素?

同学们通过观察发现了与拱门有关的东西,并介绍了新课:研究圆方程

二、探究式学习 p>

(1)圆的标准方程

1.教师预设:让学生画一个圆

学生活动:每个学生画一个圆并比较,让学生感知决定圆的元素,解释圆心和半径来决定一个圆圆圈;

2.教师预设:学生以(2, 3)为圆心画一个圆,2为半径的圆;圆确定了,圆的平方也确定了。

学生推导出圆的方程

教师在学生的基础上梳理思路,强调建立方程的基础。

3.从特殊到一般,得到以(a, b)为圆心,半径为r的圆的标准方程

(x-a)2+(y-b)2=r2

教师引导学生观察方程,分析总结方程的特点。

方程特征:(1)二元二次方程,x和y的系数都为1;

(2) 包含三个参数a, b, r;

p>

(3) 圆的圆心和半径可以用已知方程求出。

4.课堂练习

教师预设:练习1求以下圆的圆心和半径

(1) x2+(y+1)2=16 (2) (2x-2)2+(2y+4)2=4 (3)(x+1)2+(y+2)2=m2 学生根据圆练习 求圆方程的圆心和半径,完成后,学生回答。教师根据学生的情况发表意见。

教师预设:习题2写出下列圆的方程

(1),圆心为原点,半径为r

(2)、在点(5, 1)之后,圆心在点(8,-3)

学生完成练习和自测,初步体验标准方程一个圆圈。关键是找到中心和半径。

(2)实例分析

教师预设:在习题2的基础上巩固提高,根据不同求圆的标准方程条件

示例 1 写出圆心在点 (1, 3) 且与 x 轴相切的圆的方程。

学生先独立思考,老师在提示,强调数字和形状结合的思想。

老师口头上做了一个简单的变化,把X轴换成Y轴。学生说出答案,然后从具体到一般。变式:找到以 C(1, 3) 为圆心并与 3x-4y-7=0 相切的圆。学生独立完成变奏,教师作简短评论。

老师假设:知道切线,就可以得到圆的方程。相反,如果知道圆的方程,如何求切线的方程?

例2 假设圆的方程是x2+y2=25,求出通过圆上一点M(3,4)的切线的方程。学生活动:学生先独立思考,然后与其他学生讨论,看看他们是否能找到几种解决方案。教师活动:教师走访,了解学生情况,参与学生讨论。

教师让学生展示他们的解并评价他们的解,从中提取出贯穿其中的数学思想和方法,例如:数与形的组合、未定系数等。

教师预设:如果点在坐标轴上,改变点的位置。

变式1:假设圆的方程是x2+y2=25,求切线通过圆上一点M(5,0)的方程。

学生活动:画图时直接写出切线方程

教师预设:从特殊到一般,启发学生根据以上两个问题进行讨论。

变式2:假设圆的方程是x2+y2=r2,求切线通过圆上一点M(x0,y0)的方程。学生活动:写出正切方程。教师总结分类讨论的依据。

老师预设:如果把圆上的点改到圆外,有多少条切线?怎么问?

变式3:假设圆的方程为x2+y2=25,求切线通过圆外一点M(1,7)的方程。变式4:假设圆的方程是x2+y2=25,求出经过圆外一点M(5,3)的切线方程。学生活动:思考问题

老师强调,当系数不定时,注意斜率的存在。课后思考:解决本节介绍的问题

3.摘要:

1.掌握圆的标准方程

2.用圆的标准方程解决一些简单的问题

4.课堂练习

1.圆心 (2x-2)2+(2y-4)2=(-3)2 是————————— 半径是————————— ——— ——.

2.圆的中心在 x 轴上并且与 y 轴相切。半径为2的圆的标准方程是————————————

< p> 3。 圆心为(1, 2)且与直线5x-12y-7=0相切的圆方程为——————————————< p> 4。 从运动点P到圆x2+y2=1,画两条切线PA和PB,切点分别为A和B,∠APB=60°,则运动点P的轨迹方程为 ——————————————————

◆ 圆与方程课件

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

◆ 圆与方程课件

一、教学目标

(1)知识目标:

①在平面直角坐标系中,探索并掌握圆的标准方程;

②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标:

①进一步培养学生用解析法研究几何问题的能力;

②使学生加深对数形结合思想和待定系数法的理解;

③增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

二、教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。

三、教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得。

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2、如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i、直接应用(内化新知)

问题三:

1、写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点。

2、根据圆的方程写出圆心和半径

(1);(2)。

ii、灵活应用(提升能力)

问题四:

1、求以为圆心,并且和直线相切的圆的方程。

[教师引导]由问题三知:圆心与半径可以确定圆。

2、已知圆的方程为,求过圆上一点的切线方程。

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率—垂直)

方法二:待定系数法(利用代数关系求斜率—联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3、你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:。

iii、实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:

1、求以c(—1,—5)为圆心,并且和y轴相切的圆的方程。

2、已知点a(—4,—5),b(6,—1),求以ab为直径的圆的方程。

3、求圆x2y2=13过点(—2,3)的切线方程。

4、已知圆的方程为,求过点的切线方程。

◆ 圆与方程课件

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的`值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

◆ 圆与方程课件

式与方程着重复习用字母表示数、简单的方程及其应用。

成功之处:

分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:

第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。

第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。

通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。

不足之处:

1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。

2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。

改进之处:

可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。

◆ 圆与方程课件

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的欲望,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

◆ 圆与方程课件

组合图形的面积计算

教学目标:

1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

一、创设情境,引入新知

1、出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2、引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1、教学例11、

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

学生回答后,教师板书

3、完成“试一试”。

(1)出示题目和图形,学生读题。

(2)提问:这个组合图形是由哪些基本图形组合而成的?

(3)半圆和正方形有什么相关联的地方?

学生交流后,明确:正方形的边长就是半圆的直径。

(4)思考一下,半圆的面积该怎样计算?

(5)学生独立计算。

(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以20

4、小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

三、巩固练习,加深理解

1、完成“练一练”。

(l)看图,弄清题意。

(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

(4)学生独立计算。

(5)集体交流。

2、完成练习十五第9题。

(1)学生先量出相关数据。

(2)根据数据独立完成计算。

(3)集体交流。

3、完成练习十五第13题。

(1)估计每种花卉所占圆形面积的几分之几。

(2)计算每种花卉的种植面积。

(3)集体交流。

4、完成练习十五第14题。

(1)学生根据图形做出直观的判断,并说说直观判断的方法。

(2)通过计算检验所做出的判断。

5、完成练习十五第15题。

(1)学生读题,观察示意图。

(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

(3)学生独立计算。

(4)集体交流。

6、思考题。

(1)学生充分思考后再列式计算。

(2)组织交流。

四、课堂小结

师:这节课学习了什么内容?你有什么启发?

先由学生自主发言,然后教师补充完善。

板书设计:

①求出外圆的面积:3、14×102=314(平方厘米)

②求出内圆的面积:3、14×62=113、04(平方厘米)

③计算圆环的面积:314—113、04=200。96(平方厘米)

简便计算

3、14×102—3、14×62

=3、14×(102—62)

=3、14×64

=200。96(平方厘米)

答:这个铁片的面积是200。96平方厘米。

环形面积计算公式:或

◆ 圆与方程课件

教学目标:

1、知识与技能目标:知道圆的周长和圆周率的含义,理解并掌握圆的周长计算公式,能正确计算圆的周长。

2、过程与方法目标:培养学生的动手实践、观察、比较和概括的能力,发展空间观念。

3、介绍祖冲之在圆周率方面的成就,渗透爱国思想。

教学重点:

圆的周长和圆周率的含义,理解并掌握圆的周长计算公式。

3、揭示课题:

师:有什么方法可以测量你手中小圆片的周长的?想一想?

A:用一根绳子,绕圆一周,去掉多余部分,再拉直量出它的长度,这就是圆的周长。

B:在圆上做一个记号,让这个记号在直尺上滚动一周,滚动的距离就是圆的周长。

师:用这两种方法可以测量手中圆的周长,那现在老师想知道学校圆形跑道的周长还以用滚动法吗?(不可以)用绳测法方便吗?(不方便)接下来我们就来寻找一种更简便的方法。

师:圆的周长和什么有关呢?请你仔细观察,说说你的发现。

多名学生回答后师:圆的周长和它的直径有关,直径越大,这个圆的周长就越大。

师:圆的周长与它的直径存在什么样的数量关系呢?请同学们拿出课前准备的3个小圆,进行测量,要求小组合作.(板书:圆的周长÷直径)

合作要求:

1、利用手中的学具测量出圆的周长和直径。

2、把测量的结果写到练习本上。

3、计算圆的周长除以直径的结果(得数保留两位小数)。

4、观察得到的数据,说说你的发现。

学生小组合作进行测量,计算,教师巡视并参与其中。

师:圆的周长÷直径=圆周率。那圆的周长等于什么?

师:用字母C表示圆的周长,则有 C=πd或C=2πr.

3、解决实际问题:

教学例1圆形花坛的直径是20米,它的周长是多少?小自行车车轮直径是50厘米,它绕花坛一周要多少周?

第1个问题:已知直径求周长 C=πd=3.14×20=62.8(米)

第2个问题:先求小自行车车轮转动一周的长度,再求需要多少圈。

50cm=0.5m,0.5×3.14=1.57(m) 62.8÷1.57=40(周)

(1)钟面的直径是40厘米,钟面的周长是多少厘米?

(2)钟面分针长10厘米,它旋转一周针尖走过多少厘米?

四、总结

◆ 圆与方程课件

椭圆的标准方程

椭圆是几何中十分重要的一种图形,在许多科学技术领域都有广泛的应用。在学习椭圆相关知识时,掌握椭圆的标准方程是非常重要的,本文将对椭圆的标准方程进行详细介绍。

椭圆的定义

椭圆是指平面上到两个固定点的距离之和为定值的点的轨迹,这两个固定点分别称为椭圆的焦点。椭圆的中心为两个焦点连线的中点,离中心最远的两个点分别称为椭圆的顶点,它们之间的距离称为椭圆的长轴,连接长轴两端点的线段称为椭圆的主轴。离中心最近的两个点也称为椭圆的顶点,它们之间的距离称为椭圆的短轴,短轴的长度和长轴的长度之比称为椭圆的离心率。

椭圆的标准方程

椭圆的标准方程是指以椭圆中心为原点的坐标系下,椭圆上的任意一点的坐标满足一定的方程式。椭圆标准方程的形式和圆的标准方程非常相似,只是多了一个系数,即椭圆的离心率。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

其中$a$和$b$分别表示椭圆长轴和短轴的长度,满足$a>b>0$,$c$为椭圆焦距的一半,满足$(2c)^2=a^2-b^2$,$e$为椭圆的离心率,满足$e=\frac{c}{a}$。

椭圆的参数方程

我们可以通过参数方程直接描述一条椭圆的轨迹。参数方程是将椭圆的$x$和$y$坐标分别表示为参数$t$的函数。

椭圆的参数方程为:$x=a\cos t$,$y=b\sin t$。

参数$t$的范围为$0\leq t
椭圆的性质

椭圆具有以下几个性质:

- 椭圆的任意一条直径长度等于长轴的长度。
- 椭圆的内接矩形面积等于长轴和短轴的乘积。
- 椭圆的对称轴分别与长轴和短轴垂直。
- 椭圆的焦点到椭圆上任意一点的距离之和为定值$2a$,其中$a$为长轴的长度。
- 椭圆的离心率小于$1$,当离心率等于$0$时椭圆退化为一个点,当离心率等于$1$时椭圆退化为一个由两个焦点组成的线段,当离心率大于$1$时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html

上一页:早安媳妇问候语(集锦五十七句) $时椭圆退化为一个不存在的图形。

椭圆的应用

椭圆在我们的日常生活中有着广泛的应用。比如说,在天文学中,椭圆被用来描述行星的轨道;在机械工程中,椭圆被用来描述偏心轮的运动;在建筑学中,椭圆被用来设计建筑物的拱形;在艺术领域中,椭圆被用来设计各种精美的图案和装饰,等等。

总之,在数学、科学和艺术领域,椭圆都有着极其广泛的应用。因此,掌握椭圆的相关知识是我们进行研究和创造的必要前提。

◆ 圆与方程课件

本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。



一、椭圆的基本概念



椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:



1. 主轴(长轴):连接两个焦点且最长的轴;


2. 次轴(短轴):连接两个焦点且最短的轴;


3. 焦距:点到椭圆两个焦点的距离之和;


4. 离心率:椭圆的焦距与主轴长的比值;


5. 中心:椭圆的中心点,位于主轴和次轴的交点处;


6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。



二、椭圆的标准方程



椭圆的标准方程为:



其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。



三、使用椭圆的标准方程解题



通过椭圆的标准方程,我们可以解决各种实际问题,例如:



1. 确定椭圆的中心、焦距和离心率;



2. 求椭圆的长轴和短轴;



3. 求过给定点的椭圆的方程;



4. 求椭圆与坐标轴相交的点;



5. 求椭圆的面积和周长。



例如,假设有一个椭圆方程为x²/25 + y²/16 = 1,我们可以通过标准方程给出以下解答:



1. 中心为(0, 0);



2. 长轴长度为10,短轴长度为8;



3. 过给定点(3, 4)的椭圆方程为(x-3)²/25 + (y-4)²/16 = 1;



4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);



5. 面积为40π,周长为4(π+2)。



总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

◆ 圆与方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

◆ 圆与方程课件

小学数学六年级圆的认识课件

小学数学六年级圆的认识课件

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的.半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 (  )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 (  )

(4)圆心在圆上。  (  )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)  位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

◆ 圆与方程课件

椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

一、椭圆的定义与性质

椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

2. 椭圆的两个焦点之间的距离等于椭圆的长轴长。

3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

二、椭圆的标准方程

对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

1. 椭圆的长轴与x轴平行:

$(\frac{x-x_0}{a})^2+(\frac{y-y_0}{b})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

2. 椭圆的长轴与y轴平行:

$(\frac{x-x_0}{b})^2+(\frac{y-y_0}{a})^2=1$;

其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

三、椭圆的应用

椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

四、结语

本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

◆ 圆与方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

    更多精彩圆与方程课件内容,请访问我们为您准备的专题:圆与方程课件

本文来源:https://www.gsi8.com/huibaoziliao/149888.html