工作汇报网 >地图 >工作总结 >

等差数列方程思想总结

等差数列方程思想总结(汇总十六篇)

时间:2017-11-27 作者:工作汇报网

等差数列方程思想总结(汇总十六篇)。

⬮ 等差数列方程思想总结 ⬮

授课教师 授课班级 课 题 3.2.1等差数列(一) 课型 新授课 教学目标 知识目标 等差数列的定义.

等差数列的通项公式. 能力目标 明确等差数列的定义.

掌握等差数列的通项公式,并能运用其解决问题. 情感目标 培养学生的观察能力.

进一步提高学生的推理、归纳能力.

培养学生的应用意识. 教学重点 等差数列的定义的理解和掌握.

等差数列的通项公式的推导和应用. 教学难点 等差数列“等差”特点的理解、把握和应用. 教学过程 教学环节和教学内容 设计意图 【复习回顾】(2分钟)

数列的定义以及数列的通项公式和递推公式。

【引入】(3分钟)

某人要用彩灯装饰圣诞树,这个人做事喜欢按一定的规律去做,他在圣诞树的顶尖装上1个彩灯,在第一层装上4个,第二层装上7个,第三层装上10个,第四层装上13个。如果有第五层,你能猜得出他要装上多少个彩灯吗?他的规律是怎样的?

你能根据规律在( )内填上合适的数吗?

(1)1, 4, 7,10,13,( )

(2)21, 21.5, 22, ( ), 23, 23.5,…

(3)8,( ), 2, -1, -4, …

(4)-7, -11, -15, ( ), -23

共同特点:从第2项起,每一项与它的前一项的差等于同一个常数。这样的数列叫做等差数列。

【讲授新课】(16分钟)

一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。

用符号表示:

教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。

问题:1.数列(1)(2)(3)(4)的公差分别是多少?

2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10

(6)5, 5, 5, 5, 5, 5 ……是等差数列吗?

3.求等差数列 1, 4, 7,10,13,16,…的第100项。

师生一起讨论回答。

二、等差数列的通项公式

如果等差数列 的首项是 ,公差是d,则据其定义可得:

即:

即:

即:

由此归纳等差数列的通项公式可得:

∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项

思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是?答:

【例题讲解】(8分钟)

⬮ 等差数列方程思想总结 ⬮

等差数列教材(教案) 课  题:等差数列 教  材:(苏教版数学第二册)§子1.2  等差数列 课  型:新授课 教学目标: 1、知识目标:(1)明确等差数列的定义,掌握等差数列的通项公式 (2)会解决知道an,a1,d,n中的三个,求另外一个的问题 2、能力目标:培养学生具有良好的观察能力、归纳能力、应用能力和创新解题能力 3、情感目标:培养学生具有良好的协作精神和探索精神 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学方法:发现法、观察法、讨论法、讲解法及其组合 教  具:多媒体 内容分析:前面学习了数列的定义及表示数列的几种方法――列举法、通项公式、递推公式等,这些方法从不同的角度反映了数列的.特点,具备这些知识后,为本节课探索等差数列的定义、通项公式等创造了条件。 教学过程: 一、创设情境 教师活动 学生活动 设计意图 1、小明昨天背记了1个英文单词,从今天开始,他背记的单词量逐日增加,依次为:6,11,16,21,……请同学们仔细观察一下,以上数列有什么特点? 学生独立思考后口答 问题是数学的心脏,数学来源于生活 2、提出问题:多少天后他背记的单词量达到301? 表明自己观点 让学生大胆猜想,引发思考,引出新课 二、探索活动 教师活动 学生活动 设计意图 1、交流与发现:(1)等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。注意 ①公差d一定是由后项减前项所得,而不能用前项减后项来求 ②对于数列{an},若an-an-1=d(与n无关的数或字母),n≥2,n∈N+,则此数列是等差数列,d为公差。 (2)等差数列的通项公式:an=a1+(n-1)d 学生与同桌交流后回答           探索、研究等差数列的定义及通项公式       2、例题讲解 (1)求等差数列8,5,2……的第20项 (2)-401是不是等差数列-5,-9,-13……的项?如果是,是第几项? 解:(1)由a1=8,d=5-8=2-5=-3 N=20,得a20=8+(20-1)×(-3)=-49 (2)由a1=-5,d=-9-(-5)=-4 得数列通项公式为:an=-5-4(n-1) 由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之得n=100,既-401是这个数列的第100项。 在等差数列{an}中,已知a5=10,a12=31,求a1,d,a20,an 解法一:∵a5=10,a12=31,则     a1+4d=10  a1=-2   a1+11d=31 d=3 ∴an=a1+(n-1)d=3n-5 a20=a1+19d=55 解法二:a12=a5+7d 31=10+7d d=3 ∴a20=a12+8d=55 小结:第二通项公式an=am+(n-m)d 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。 解:设{an}表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33,a12=10,n=12 ∴a12=a1+(12-1)d,即110=33+11d 解得:d=7 因此,a2=33+7=40,a3=40+7=47,a4=54,a5=61, a6=68,a7=75,a8=82,a9=89,a10=96,a11=103, 答;梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm。   先让学生发表观点,后喊两名中等生板书     学生小组讨论后发表观点并积极上黑板板书               发挥学生优势,画出图形,讨论先求什么   会用通项公式,学会用方程思想解题     做好“条件”转化:学会列方程组解决     培养学生一题多解的能力   学会应用,培养数学建模能力与应用能力   三、巩固练习教师活动 学生活动 设计意图 练习: 1、(1)求等差数列3,7,11,……的第4项与第10项。   (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。           2、在等差数列{an}中,(1)已知a4=10,a7=9,求a1与d; (2)已知a3=9,a9=3,求a12。   a1+3d=10  a1+6d=19     点拨:(1)由题意得:  (2)解法一:由题意可得: a1+2d=9 a1=11 a1+8d=3 d=-1 ∴该数列的通项公式为:an=11+(n-1)×(-1)=12-n, ∴a12=0 解法二:由已知得:a9=a3+6d, 即:3=9+6d, ∴d=-1 又∵a12=a9+3d, ∴a12=3+3×(-1)=0   喊4名中等学生板书   喊2名中等学生板书: 令7n-5=100,解得:n=15, ∴100是这个数列的第15项     喊2名中等学生板书       喊2名中等学生板书,注意对照   会用通项公式     会判断一数是否为某一数列的其中一项,注意解题步骤的规范性与准确性                   会由an,a1,d,n中的三个,求另外一个,培养发散性思维,培养一题多解能力与创新解题能力 四、反思总结 教师活动 学生活动 设计意图 通过本节课的学习,你有什么体会和收获?本课涉及哪些数学知识、思想、方法? 培养学生总结、归纳能力 及时总结,授之以渔 教学反思: 本节课的教学体现了“自主探索与合作交流”的教学理念,学生在探索中获得了数学的“思想、方法、能力、素质”。 一、情境创设,自然有效。 实践证明,通过问题发现问题,符合职业中学学生的认知特点,自然有效。 二、自主探索,惊喜不断。 本课从多层面开展课堂活动,既有民主和谐的师生互动式活动,更有学生的独立思考、演练、小组讨论、观察,发现,总结交流等学习活动,学生在探索过程中学得灵活、踏实、轻松、愉快,体验学习数学的成功和快乐。 三、夯实基础,提高效益。 本课以课本例题、练习为原型,创造性地使用教材,层层推进,激发学生学习潜能,培养学生具有良好的思维特性,渗透基本的数学思想和方法,培养学生数学建模能力,培养学生创新解题能力和应用能力,极大的提高了数学课堂教学效益。 四、新的思考。 1、要注意an=am+(n-m)d和an=pn-q(p、q是常数)的理解与应用; 2、在等差数列通项公式的应用中,应突出它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么两项可以决定一个等差数列。

⬮ 等差数列方程思想总结 ⬮

一.教材分析及能力要求:

数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

二.教学中的重点、难点教学

数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的'课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

三.教学过程反思

在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

⬮ 等差数列方程思想总结 ⬮

各位老师你们好!

今天我要为大家讲的课题是:等差数列的前n项和

一、教材分析(说教材):

1、教材所处的地位和作用:《等差数列的前n项和》是高中数学人教版第一册第三章第三节内容在此之前学生已学习了集合、函数的概念、等差数列的概念、通项公式和它的一些性质等基础知识,这为过渡到本节的学习起着铺垫作用。

2、教育教学目标:

根据上述分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:深刻理解等差数列求和公式的推导方法;熟记求和公式;能够应用求和公式并发现求和公式的函数本质;

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题的能力;初步培养学生运用知识、探索知识间联系的能力。

(3)情感目标:通过对等差数列求和公式的认识使学生感受到现实生活中数据间存在的规律性,这种规律性体现数学美从而激发学生学习兴趣。

3、重点,难点以及确定依据:

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路。推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上。

二、教学策略(说教法)

1、教学手段:

应着重采用启发式的教学方法层层推进:

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用。

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活。

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法。

④补充等差数列前项和的最大值、最小值问题。

2、教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法)

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展生理上表少年好动,注意力易分散

(2)知识障碍上:学生原有的知识等差数列的性质许多学生出现遗忘,所以应全面系统的去讲述;并进行适当的复习。学生学习本节课的知识,关键是推导思路的获得学生不易理解,所以教学中深入浅出的分析

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

四、教学程序及设想:

1、新课引入(由实例得出本课新的知识点)

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?(课件设计见课件展示或在黑板上画出简图)

问题就是(板书)

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的。(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了。高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

2、讲解新课

1、公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义。

思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关。这个思路似乎进行不下去了。

思路二:上面的等式其实就是个改写,为回避个数问题,做一,两式左右分别相加,得于是有:。这就是倒序相加法。

思路三:受思路二的启发,重新调整思路一,可得于是得到了两个公式(投影片):和。

2、公式记忆:公式中含有四个量,运用方程的思想,知三求一。 3。公式的应用例1。求和:(结果用表示)

评:解题的关键是数清项数,小结数项数的方法。

例2。等差数列中前多少项的和是9900?本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数。

五、小结

1、推导等差数列前项和公式的思路;

2。公式的应用中的数学思想。

3。进一步提醒学生前n项和公式的函数本质

六、板书设计

七、布置作业

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,(可分必做题,选做题,思考题)

⬮ 等差数列方程思想总结 ⬮

教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。

设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

教学内容:

高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

教学地位:

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网

教学重点:

理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。

教学难点:

对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。

二、学习者分析:

高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

知识目标:

理解等差数列定义,掌握等差数列的通项公式。

培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

情感目标:

①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

通过探究式教学方法充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。

通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。

六、教学程序:

(一)设置问题,引导发现形成概念w。

北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

每行数有何共同特点?请同学们互相讨论。

(从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)

从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。

48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?

师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?

师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?

学生3:从第二项起,每一项与它的前一项的差等于同一个常数。

(教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:

= 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)

这样的数列在生活中的例子,谁能再举几个?

52,50,48,46,44,42,40,38.

21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25

学生7:马路边的路灯,相邻两盏之间的距离构成的数列。

a,a,a,a,……,为常数列,即常数列都具有这种特征。

师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。

对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。

学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.

师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)

求而按数列的特征求呢?

师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网

启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。

⬮ 等差数列方程思想总结 ⬮

一、等差数列的有关概念

1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d(n∈N*,d为常数).

2.等差中项:数列a,A,b成等差数列的充要条件是A=(a+b)/2,其中A叫做a,b的等差中项.

二、等差数列的有关公式

1.通项公式:an=a1+(n-1)d.

2.前n项和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.

三、等差数列的性质

1.若,n,p,q∈N*,且+n=p+q,{an}为等差数列,则a+an=ap+aq.

2.在等差数列{an}中,a,a2,a3,a4,…仍为等差数列,公差为d.

3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d.

4.等差数列的增减性:d>0时为递增数列,且当a1<0时前n项和Sn有最小值.d<0时为递减数列,且当a1>0时前n项和Sn有最大值.

5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的'前n项和Sn=An2+Bn是{an}成等差数列的充要条件.

四、解题方法

1.与前n项和有关的三类问题

(d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想.

(2)Sn=d/2*n2+(a1-d/2)n=An2+Bnd=2A.

(3)利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.

2.设元与解题的技巧

已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;

若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

高中数学知识点等差数列的定义及性质

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。

等差数列的性质:

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;

(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;

(3)m,n∈N*,则am=an+(m-n)d;

(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;

(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。

(6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即

对等差数列定义的理解:

①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.

②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有

③公差d∈R,当d=;当d>0时,数列为递增数列;当d<0时,数列为递减数列;

④ 是证明或判断一个数列是否为等差数列的依据;

⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

等差数列求解与证明的基本方法:

(1)学会运用函数与方程思想解题;

(2)抓住首项与公差是解决等差数列问题的关键;

(前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).

等差数列公式

等差数列的通项公式为:an=a1+(n-1)d

或an=am+(n-m)d

前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

若m+n=2p则:am+an=2ap

以上n均为正整数

文字翻译

第n项的值=首项+(项数-1)*公差

前n项的和=(首项+末项)*项数/2

公差=后项-前项

等比数列公式

等比数列求和公式

(1) 等比数列:a (n+1)/an=q (n∈N)。

(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

(4)性质:

①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

②在等比数列中,依次每 k项之和仍成等比数列.

③若m、n、q∈N,且m+n=2q,则am×an=aq^2

(b的等比中项""G^2=ab(G ≠ 0)".

(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

⬮ 等差数列方程思想总结 ⬮

各位评委老师:

大家好!

我说课的课题是等差数列的前n项和,本节内容选自江苏教育出版社中职数学第二册第11章第2节,下面我将从说教材、说教法学法、说教学过程、说板书设计以及说教学反思几个方面对本节课加以说明。

一、下面先说说教材

1、教材的地位和作用

中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。

《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面

知识目标:掌握等差数列的前n项和公式

能力目标:1、培养学生观察、归纳、类比、联想等发现规律的一般方法。

2、提高学生分析问题和解决问题的能力

情感目标:1、培养学生主动探索的精神和良好的学习习惯

2、让学生在问题中感受学习的乐趣;

3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将

教学重点确定为:等差数列的前n项和公式及应用

教学难点确定为:应用等差数列解决有关问题

二、说教法学法

教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。

中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。

学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了①创设情境—引入问题②分析归纳—解决问题③例题研究—运用新知④分组训练—巩固新知⑤总结归纳—提高认识⑥课后作业-自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

接下来,我再具体谈一谈这堂课的教学过程。

三、说教学过程

(一)创设情境——引入问题教学设想

我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中的实例一招聘信息引入:A公司月薪20xx元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事

1+2+3+…+100=

同学们,如果你是小高斯,你会怎么向老师解释算法呢?

(二)分析归纳——解决问题教学设想

由高斯的解题过程:

S= 1+2+3+…+100

S= 100+99+98+…+1

2S=(100+1)×100

S=(100+1)100/2=5050

让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。

1、等差数列前n项求和公式

类似m+n=s+t am+an=as+at m,n,s,t∈N+

等差求和

倒排相加

另有

即(2)——类似梯形面积公式便于记忆

进而让学生解决课前提出的问题

一年在A公司12×20xx

在B公司

800+900+1000+…1900

五年在A公司20xx×12×5

在B公司

800+900+1000+…+6700

——让学生利用刚学的知识解决当前的问题,让学生明白学以致用。

(三)例题研究——运用新知教学设想

通过例题,使学生加深对知识的理解,从而达到掌握、运用知识的效果

例1、(1)求正奇数前100项之和;

(2)求第101个正奇数到第150个正奇数之和;

(3)等差数列的通项公式为an=100-3n,求其前65项之和;

(4)在等差数列{an}中,已知a1=3,,求S10

例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?

例3、设等差数列{an}的公差d=,,前n项之和Sn=。求a1及n

课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。

(四)分组训练—巩固新知

教学设想,例题过后,我特地设计了一组检测题,

1、等差数列求和公式Sn=

2、等差数列{an}中,(1)a1=2,d=-1则Sn=

3、2c+4c+6c+…+2nc=

4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?

5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?

通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。

(五)总结归纳——提高认识教学设想

让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。

(六)课后作业自主探究

教学设想

学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。

根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。

四、说板书设计

我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。

我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。

五、说教学反思

根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。

结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。

⬮ 等差数列方程思想总结 ⬮

数量关系是行测中的一个重要考察部分,能够快速解决数量关系的考生在考试中基本可以和其他考生拉开较大分差,而比例法是解决数量问题的一个重要方法,在行程、工程以及其他很多题型中都可以能够应用。对于比例法,小编建议大家可以从以下方面来突破。

解析:题干中给出初:中=5:3,中:高=2:1,大家观察这两个比例关系不难发现,两个比例关系中都存在一个相同的量也就是中级技工的人数,那最终我们要求三者之比其实就可以借助中级这个不变量进行统一,把中级人数的份数变为相同份数,这样一份所对应的实际量也就一样了,两个比例关系也就统一到同一个维度上了。那我们可以把中级的人数统一成6分,第一个比例关系扩大2倍,第二个比例关系扩大3倍,最终可以得到初:中:高=10:6:3。

解析:本题中存在两个比例关系,这两个比例关系并没有很明显的不变量,但是其实大家再去认真思考,会发现其实两个比例关系其实隐藏了一个不变量即总量,所以可以借助总量进行统一,第一个比例关系总量为13份,第二个为5份,则可以统一为其最小公倍数65份,第一个扩大5倍,第二个扩大13倍,最终可以得到所求为25:26。

由以上两道例题我们可以得出比例解决的核心思想是什么呢,其实就是找到不同比例关系中都存在且不变量,然后统一为最小公倍数即可。

在数量遇到的题中,常用到的思想为正反比的思想。当乘积为定值时成反比,商为定值时成正比。

a.2b.4c.6d.8。

解析:本题中根据题干不难发现三种车辆行使的时间相同,时间一定,路程和速度存在正比关系。根据摩托车的速度进行比例统一,可得自行车、摩托车、汽车速度之比为4∶6∶15。由汽车15分钟比自行车多走11公里,可知15分钟内三者所走路程分别是4公里、6公里、15公里,则30分钟自行车、摩托车所走路程分别是8公里、12公里,自行车比摩托车少走4公里。故本题答案为b。

⬮ 等差数列方程思想总结 ⬮

(1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件。通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能。

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,  出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量。由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的'有一难点。

(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项  可看作项数  的一次型(  )函数,这与其图像的形状相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式  是数列第  项  与项数  之间的函数关系式,有穷等差数列的项数未必是  ,即其末项未必是该数列的第  项,在教学中一定要强调这一点.

⑥等差数列前  项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.

⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

⬮ 等差数列方程思想总结 ⬮

本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.

在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.

数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.

1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.

2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.

3.通过对等差数列的研究,使学生明确等 差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.

教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.

教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.

思路1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了新课.

思路2.(类比导入)教师首先引导学生复习上节课所学的数列的概念及通项公式,使学生明了我们现在要研究的就是一列数.由此我们联想:在初中我们学习了实数,研究了它的一些运算与性质,那么我们能不能也像研究实数一样,来研究它的项与项之间的关系、运算和性质呢?由此导入新课.

1回忆数列的概念,数列都有哪几种表示方法?

2阅读教科书本节内容中的①②③3个背景实例,熟悉生活中常见现象,写出由3个实例所得到的数列.

3观察数列①②③,它们有什么共同特点?

4根据数列①②③的特征,每人能再举出2个与其特征相同的数列吗?

5什么是等差数列?怎样理解等差数列?其中的关键字词是什么?

6数列①②③存在通项公式吗?如果存在,分别是什么?

7等差数列的通项公式是什么?怎样推导?

活动:教师引导学生回忆上节课所学的数列及其简单表示法——列表法、通项公式、递推公式、图象法,这些方法从不同角度反映了数列的特点.然后引导学生阅读教材中的实例模型,指导学生写出这3个模型的数列:

①22,22.5,23,23.5,24,24.5,…;

②2,9,16,23,30;

③89,83,77,71,65,59,53,47.

这是由日常生活中经常遇到的实际问题中得到的数列.观察这3个数列发现,每个数列中相邻的后项减前项都等于同一个常数.当然这里我们是拿后项减前项,其实前项减后项也是一个常数,为了后面内容的学习方便,这个 顺序不能颠倒.

至此学生会认识到,具备这个特征的数列模型在生活中有很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体育场一角的看台的座位排列:第一排15个座位,向后依次为17,19,21,23,…,等等.

以上这些数列的共同特征是:从第2项起,每一项与它前面一项的差等于同一个常数(即等差).这就是我们这节课要研究的主要内容.教师先让学生试着用自己的语言描述其特征,然后给出等差数列的定义.

等差数列的定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.

教师引导学生理解这个定义:这里公差d一定是由后项减前项所得,若前项减后项则为-d,这就是为什么前面3个模型的分析中总是说后项减前项而不说前项减后项的原因.显然3个模型数列都是等差数列,公差依次为0.5,7,-6.

教师进一步引导学生分析等差数列定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确、深入地理解和掌握概念的重要条件,这是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)

这里“从第二项起”和“同一个常数”是等差数列定义中的核心部分.用递推公式可以这样描述等差数列的定义:对于数列{an},若an-an-1=d(d是与n无关的常数或字母),n≥2,n∈N_,则此数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨学生注意这里的“n≥2”,若n包括1,则数列是从第1项向前减,显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合定义,如数列1,3 ,4,5,6,显然不是等差数列,因此要从意义上深刻理解等差数列的定义.

教师进一步引导学生探究数列①②③的通项公式,学生根据已经学过的数列通项公式的定义,观察每一数列的项与序号之间的关系会很快写出:①an=21.5+0.5n,②an=7n-5,③an=-6n+95.

以上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性.教师点拨学生探求,对任意等差数列a1,a2,a3,…,an,…,根据等差数列的定义都有:

a2-a1=d,

a3-a2=d,

a4-a3=d,

……

所以a2=a1+d,

a3=a2+d=(a1+d)+d=a1+2d,

a4=a3+d=(a1+2d)+d=a1+3d.

学生很容易猜想出等差数列的通项公式an= a1+(n-1)d后,教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需要用到后面的其他知识.

教师可就此进一步点拨学生:数学猜想在数学领域中是很重要的思考方法,后面还要专门探究它.数学中有很多著名的猜想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明中国已处于世界领先地位.很多著名的数学结论都是从猜想开始的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的通项公式an=a1+(n-1)d是经过严格证明了的,只是现在我们知识受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,独立思考,也会有自己的新奇发现.

教师根据教学实际情况,也可引导学生得出等差数列通项公式的其他推导方法.例如:

∴an-an-1=d,

an-1-an-2=d,

an-2-an-3=d,

……

a2-a1=d.

两边分别相加得an-a1=(n-1)d,

所以an=a1+(n-1)d,

……

=a1+(n-1)d.

所以an=a1+(n-1)d.

(5)如果一个数列从第2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.其中关键词为“从第2项起”、“等于同一个常数”.

(6)三个数列都有通项公式,它们分别是:an=21.5+0.5n,an=7n-5,an=-6n+95.

(7)可用叠加法和迭代法推导等差数列的通项公式:an=a1+(n-1)d.

活动:本例的目的是让学生熟悉公式,使学生从中体会公式与方程之间的联系.教学时要使学生认识到等差数列的通项公式其实就是一个关于an、a1、d、n(独立的量有3个)的方程,以便于学生能把方程思想和通项公式相结合,解决等差数列问题.本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,所给数就是已知数列中的项,否则,就不是已知数列中的项.本例可由学生自己独立解决,也可做板演之用,教师只是对有困难的学生给予恰当点拨.

(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?如果不是,请说明理由;

(2)-20是不是等差数列0,-312,-7,…的项,如果是,是第几项?如果不是,请说明理由.

解:(1)由题意,知a1=2,d=9-2=7.因而通项公式为an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15,所以100是这个数列的第15项.

(2)由题意可知a1=0,d=-312,因而此数列的通项公式为an=-72n+72.

令-72n+72=-20,解得n=477.因为-72n+72=-20没有正整数解,所以-20不是这个数列的项.

例2一个等差数列首项为125,公差d>0,从第10项起每一项都比1大,求公差d的范围.

活动:教师引导学生观察题意,思考条件“从第10项起每一项都比1大”的含义,应转化为什么数学条件?是否仅是a10>1呢?d>0的条件又说明什么?教师可让学生合作探究,放手让学生讨论,不要怕学生出错.

即a10>1a9≤1?125+10-1d>1,125+9-1d≤1,

点评:本例学生很容易解得不完整,解完此题后让学生反思解题过程.本题主要训练学生灵活运用等差数列的通项公式以及对公差的深刻理解.

在数列{an}中,已知a1=1,1an+1=1an+13(n∈N_),求a50.

解:已知条件可化为1an+1-1an=13(n∈N_),

由等差数列的定义,知{1an}是首项为1a1=1,公差为d=13的等差数列,

∴1a50=1+(50-1)×13=523.

∴a50=352.

例3已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

活动:要判定{an}是不是等差数列,可以利用等差数列的定义,根据an-an-1(n>1)是不是一个与n无关的常数.

这实际上给出了判断一个数列是否是等差数列的一个方法:如果一个数列的通项公式是关于正整数的一次型函数,那么这个数列必定是等差数列.因而把等差数列通项公式与一次函数联系了起来.本例设置的“旁注”,目的是为了揭示等差数列通项公式的结构特征:对于通项公式形如an=pn+q的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.因此可以深化学生对等差数列的理解,同时还可以从多个角度去看待等差数列的通项公式,有利于以后更好地把握等差数列的性质.在教学时教师要根据学生解答的情况,点明这点.

解:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

an-an-1=(pn+q)-=pn+q-(pn-p+q)=p为常数,

所以{an}是等差数列,首项a1=p+q,公差为p.

点评:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….

(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.

已知数列的通项公式an=6n-1.问这个数列是等差数列吗?若是等差数列,其首项与公差分别是多少?

解:∵an+1-an=-(6n-1)=6(常数),

∴{an}是等差数列,其首项为a1=6×1-1=5,公差为6.

点评:该训练题的目的是进一步熟悉例3的内容.需要向学生强调,若用an-an-1=d,则必须强调n≥2这一前提条件,若用an+1-an=d,则可不对n进行限制.

1.(1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

2.求等差数列3,7,11,…的第4项与第10项.

答案:

1.解:(1)由a1=8,d=5-8=-3,n=20,得a20=8+(20-1)×(-3)=-49.

(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为

an=-5-4(n-1)=-4n-1.

由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立.解这个关于n的方程,得n=100,即-401是这个数列的第100项.

∴该数列的通项公式为an=3+(n-1)×4,

即an=4n-1(n≥1,n∈N_).

∴a4=4×4-1=15,a10=4×10-1=39.

1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你在这节课里最大的收获是什么?

2.教师进一步集中强调,本节学习的重点内容是等差数列的定义及通项公式,等差数列的基本性质是“等差”.这是我们研究有关等差数列的主要出发点,是判断、证明一个数列是否为等差数列和解决其他问题的一种基本方法,要注意这里的“等差”是对任意相邻两项来说的.

本教案设计突出了重点概念的教学,突出了等差数列的定义和对通项公式的认识与应用.等差数列是特殊的数列,定义恰恰是其特殊性也是本质属性的准确反映和高度概括,准确地把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具.因为等差数列的通项公式的结构与一次函数的解析式密切相关,因此通过函数图象研究数列性质成为可能.

本教案设计突出了教法学法与新课程理念的接轨,引导综合运用观察、归纳、猜想、证明等方法研究数学,这是一种非常重要的学习方法;在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.

本教案设计突出了发散思维的训练.通过一题多解,多题一解的训练,比较优劣,换个角度观察问题,这是数学发散思维的基本素质.只有在学习过程中有意识地将知识迁移、组合、融合,激发好奇心,体验多样性,学懂学透,融会贯通,创新思维才能与日俱增.

思路1.(复习导入)上一节课我们研究了数列中的一个重要概念——等差数列的定义,让学生回忆这个定义,并举出几个等差数列的例子.接着教师引导学生探究自己所举等差数列例子中项与项之间有什么新的发现?比如,在同一个等差数列中,与某一项“距离”相等的两项的和会是什么呢?由此展开新课.

思路2.(直接导入)教师先引导学生回顾上一节所学的内容:等差数列的定义以及等差数列的通项,之后直接提出等差中项的概念让学生探究,由此而展开新课.

1请学生回忆上节课学习的等差数列的定义,如何证明一个数列是等差数列?2等差数列的通项公式是怎样得出来的?它与一次函数有什么关系?3什么是等差中项?怎样求等差中项?4根据等差中项的概念,你能探究出哪些重要结论呢?

活动:借助课件,教师引导学生先回忆等差数列的定义,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,即an-an-1=d(n≥2,n∈N_),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示).

再一起回顾通项公式,等差数列{an}有两种通项公式:an=am+(n-m)d或an=pn+q(p、q是常数).

由上面的两个公式我们还可以得到下面几种计算公差d的方法:①d=an-an-1;②d=an-a1n-1;③d=an-amn-m.

对于通项公式的探究,我们用归纳、猜想得出了通项公式,后又用叠加法及迭代法推导了通项公式.

教师指导学生阅读课本等差中项的概念,引导学生探究:如果我们在数a与数b中间插入一个数A,使三个数a,A,b成等差数列,那么数A应满足什么样的条件呢?

由定义可得A-a=b-A,即A=a+b2.

反之,若A=a+b2,则A-a=b-A,

由此可以得A=a+b2?a,A,b成等差数列.

由此我们得出等差中项的概念:如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项.如果A是x和y的等差中项,则A=x+y2.

根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.

如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项.

9是7和11的等差中项,也是5和13的等差中项.

等差中项及其应用问题的解法关键在于抓住a,A,b成等差数列?2A=a+b,以促成将等差数列转化为目标量间的等量关系或直接由a,A,b间的关系证得a,A,b成等差数列.

根据等差中项的概念我们来探究这样一个问题:如上面的数列1,3,5,7,9,11,13,…中,我们知道2a5=a3+a7=a1+a9=a2+a8,那么你能发现什么规律呢?再验证一下,结果有a2+a10=a3+a9=a4+a8=a5+a7=2a6. 由此我们猜想这个规律可推广到一般,即在等差数列{an}中,若m、n、p、q∈N_且m+n=p+q,那么am+an=ap+aq,这个猜想与上节的等差数列的通项公式的猜想方法是一样的,是我们归纳出来的,没有严格证明,不能说它就一定是正确的.让学生进一步探究怎样证明它的正确性呢?只要运用通项公式加以转化即可.设首项为a1,则am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,

ap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d.

因为我们有m+ n=p+q,所以上面两式的右边相等,所以am+an=ap+aq.

由此我们的一个重要结论得到了证明:在等差数列{an}的各项中,与首末两项等距离的两项的和等于首末两项的和.另外,在等差数列中,若m+n=p+q,则上面两式的右边相等,所以am+an=ap+aq.同样地,我们还有:若m+n=2p,则am+an=2ap.这也是等差中项的内容.

我们自然会想到由am+an=ap+aq能不能推出m+n=p+q呢?举个反例,这里举个常数列就可以说明结论不成立.

这说明在等差数列中,am+an=ap+aq是m+n=p+q成立的必要不充分条件.由此我们还进一步推出an+1-an=d=an+2-an+1,即2an+1=an+an+2,这也是证明等差数列的常用方法.

同时我们通过这个探究过程明白:若要说明一个猜想正确,必须经过严格的证明,若要说明一个猜想不正确,仅举一个反例即可.

(3)如果三个数x,A,y成等差数列,那么A叫做x和y的等差中项,且A=x+y2.

(4)得到两个重要结论:①在数列{an}中,若2an+1=an+an+2(n∈N_),则{an}是等差数列.

②在等差数列中,若m+n=p+q(m、n、p、q∈N_),则am+an=ap+aq.

例1在等差数列{an}中,若a1+a6=9,a4=7,求a3,a9.

活动:本例是一道基本量运算题,运用方程思想可由已知条件求出a1,d,进而求出通项公式an,则a3,a9不难求出.应要求学生掌握这种解题方法,理解数列与方程的关系.

解:由已知,得a1+a1+5d=9,a1+3d=7,解得a1=-8,d=5.

∴通项公式为an=a1+(n-1)d=-8+5(n-1)=5n-13.

∴a3=2,a9=32.

点评:本例解法是数列问题的基本运算,应要求学生熟练掌握,当然对学有余力的同学来说,教师可引导探究一些其他解法,如a1+a6=a4+a3=9.

∴a3=9-a4=9-7=2.

∴a9=a4+5d=32.

点评:这种解法巧妙,技巧性大,需对等差数列的定义及重要结论有深刻的理解.

已知数列{an}对任意的p,q∈N_满足ap+q=ap+aq,且a2=-6,那么a10等于( )

解析:依题意知,a2=a1+a1=2a1,a1=12a2=-3,an+1=an+a1=an-3,

可知数列{an}是等差数列,a10= a1+9d=-3-9×3=-30.

活动:本例是等差数列通项公式的灵活运用.正如边注所说,相当于已知直线过点(1,17),斜率为-0.6,求直线在x轴下方的点的横坐标的取值范围.可放手让学生完成本例.

等差数列{an}的公差d<0,且a2•a4=12,a2+a4=8,则数列{an}的通项公式是… ( )

C.an=-2n+12(n∈N_) D.an=-2n+10( n∈N_)

解析:由题意知a2•a4=12a2+a4=8d<0?a2=6a4=2?a1=8,d=-2,

所以由an=a1+(n-1)d,得an=8+(n-1)(-2)=-2n+10.

例3 已知a、b、c成等差数列,那么a2(b+c),b2(c+a),c2(a+b)是否成等差数列?

活动:教师引导学生思考a、b、c成等差数列可转化为什么形式的等式?本题的关键是考察在a+c=2b的条件下,是否有以下结果:a2(b+c)+c2(a+b)=2b2(a+c).教师可让学生自己探究完成,必要时给予恰当的点拨.

∴a+c=2b.

=(a2b-2ab2)+(bc2-2b2c)+(a2c+ac2)

=0,

∴a2(b+c)+c2(a+b)=2b2(a+c).

∴a2(b+c),b2(c+a),c2(a+b)成等差数列.

点评:如果a、b、c成等差数列,常转化为a+c=2b的形式,反之,如果求证a、b、c成等差数列,常改证a+c=2b.有时还需运用一些等价变形技巧,才能获得成功.

例4在-1与7之间顺次插入三个数a、b、c,使这五个数成等差数列,求此数列.

活动:教师引导学生从不同角度加以考虑:一是利用等差数列的定义与通项;一是利用等差中项加以处理.让学生自己去探究,教师一般不要给予提示,对个别探究有困难的学生可适时地给以点拨、提示.

解:(方法一)设这些数组成的等差数列为{an},由已知,a1=-1,a5=7,

∴7=-1+(5-1)d,即d=2.

∴所求的数列为-1,1,3,5,7.

(方法二)∵-1,a,b,c,7成等差数列,

∴b是-1,7的等差中项,a是-1,b的等差中项,c是b,7的等差中项,即b=-1+72=3,a=-1+b2=1,c=b+72=5.

∴所求数列为-1,1,3,5,7.

点评:通过此题可以看出,应多角度思考,多角度观察,正像前面所提出的那样,尽量换个角度看问题,以开阔视野,培养自己求异发散的思维能力.

数列{an}中,a3=2,a7=1,且数列{1an+1}是等差数列,则a11等于( )

解析:设bn=1an+1,则b3=13,b7=12,

因为{1an+1}是等差数列,可求得公差d=124,

所以b11=b7+(11-7)d=23,即a11=1b11-1=12.

例5某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4千米(不含4千米)计费10元.如果某人乘坐该市的出租车前往14 km处的目的地,且一路畅通,等候时间为0,需要支付多少元的车费?

活动:教师引导学生从实际问题中建立数学模型.在这里也就是建立等差数列的数学模型.引导学生找出首项和公差,利用等差数列通项公式的知识解决实际问题.

解:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以,我们可以建立一个等差数列{an}来计算车费.

令a1=11.2表示4 km处的车费,公差d=1.2,那么,当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).

点评:本例中令a1=11.2,这点要引起学生注意,这样一来,前往14 km处的目的地就相当于n=11,这点极容易弄错.

1.已知等差数列{an}中,a1+a3+a5+a7=4,则a2+a4+a6等于( )

2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )

答案:

1.解析:由a1+a3+a5+a7=4,知4a4=4,即a4=1.

∴2a1+3d=13.

∵a1=2,∴d=3.

而a4+a5+a6=3a5=3(a1+4d)=42.

1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你是如何通过旧知识来获取新知识的?你在这节课里最大的收获是什么?

2.教师进一步画龙点睛,本节课我们在上节课的基础上又推出了两个很重要的结论,一个是等差数列的证明方法,一个是等差数列的性质,要注意这些重要结论的灵活运用.

本教案是根据课程标准、学生的认知特点而设计的,设计的活动主要都是学生自己完成的.特别是上节课通项公式的归纳、猜想给学生留下了很深的记忆;本节课只是继续对等差数列进行这方面的探究.

本教案除了安排教材上的两个例题外,还针对性地选择了既具有典型性又具有启发性的几道例题及变式训练.为了学生的课外进一步探究,在备课资料中摘选了部分备用例题及备用习题,目的是让学生对等差数列的有关知识作进一步拓展探究,以开阔学生的视野.

本教案的设计意图还在于,加强数列与函数的联系.这不仅有利于知识的融会贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步,让学 生体会到数学是有趣的,探究是愉悦的,归纳猜想是令人振奋的,借此激发学生的数学学习兴趣.

【例1】 梯子最高一级宽33 cm,最低一级宽为110 cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.

解:设{an}表示梯子自上而下各级宽度所成的等差数列,由已知条件,可知a1=33,a12=110,n=12,所以a12=a1+(12-1)d,即得110=33+11d,解之,得d=7.

因此a2=33+7=40,a3=40+7=47,a4=54,a5=61,a6=68,a7=75,a8=82,a9=89,a10=96,a11=10 3.

答:梯子中间各级的宽度从上到下依次是40 cm,47 cm,54 cm,61 cm,68 cm,75 cm,82 cm,89 cm,96 cm,103 cm.

【例2】 已知1a,1b,1c成等差数列,求证:b+ca,c+ab,a+bc也成等差数列.

证明:因为1a,1b,1c成等差数列,所以2b=1a+1c,化简得2ac=b(a+c),所以有

b+ca+a+bc=bc+c2+a2+abac=ba+c+a2+c2ac=2ac+a2+c2ac=a+c2ac=a+c2ba+c2=2•a+cb.

因而b+ca,c+ab,a+bc也成等差数列.

【例3】 设数列{an}{bn}都是等差数列,且a1=35,b1=75,a2+b2=100,求数列{an+bn}的第37项的值.

分析:由数列{an}{bn}都是等差数列,可得{an+bn}是等差数列,故可求出数列{an+bn}的公差和通项.

解:设数列{an}{bn}的公差分别为d1,d2,则(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2为常数,所以可得{an+bn}是等差数列.设其公差为d,则公差d=(a2+b2)-(a1+b1)=100-(35+75)=-10.因而a37+b37=110-10×(37-1)=-250.

所以数列{an+bn}的第37项的值为-250.

点评:若一个数列未告诉我们是等差数列时,应先由定义法判定它是等差数列后,方可使用通项公式an=a1+(n-1)d.但对客观试题则可以直接运用某些重要结论,直接判定数列是否为等差数列.

1.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )

2.在数列{an}中3an+1=3an+2(n∈N_),且a2+a4+a7+a9=20,则a10为( )

3.在等差数列{an}中,a1+3a8+a15=120,则3a9-a11的值为( )

4.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为14的等差数列,则|m-n|等于( )

5.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=__________.

6.已知a、b、c成等差数列,且a、b、c三数之和为15,若a2,b2+9,c2也成等差数列,求a、b、c.

7.设1a+b,1a+c,1b+c成等差数列,求证:a2,b2,c2也成等差数列.

8.成等差数列的四个数之和为2 6,第二数与第三数之积为40,求这四个数.

9.有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所买各台单价均减少20元,但每台最少不低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪一家商场购买花费较少?

∴a7+a9=2a8.

∴a8=8.

又∵a4,a8,a12成等差数列,

∴公差d=a8-a4=7.

∴a12=a8+d=8+7=15.

2.C 由已知得an+1-an=23,

∴{an}是首项为a1,公差d=23的等差数列.

a2+a4+a7+a9=4a1+18d=20,解得a1=2,

∴a10=2+23(10-1)=8.

3.D ∵a1+a15=2a8,

∴a1+3a8+a15=5a8=120.

∴a8=24.

而3a9-a11=3(a1+8d)-(a1+10d)=2a1+14d=2(a1+7d)=2a8=48.

4.C 设a1=14,a2=14+d,a3=14+2d,a4=14+3d,

而方程x2-2x+m=0中的两根之和为2,方程x2-2x+n=0中的两根之和也是2,

∴a1+a2+a3+a4=1+6d=4.

∴d=12.

∴a1=14,a4=74是一个方程的两个根,a2=34,a3=54是另一个方程的两个根.

∴716,1516为m或n.

6.解:由已知得2b=a+c,a+b+c=15,2b2+9=a2+c2,

解之,得a=8,b=5,c=2,或a=2,b=5,c=8.

7.证明:由已知得1a+b+1b+c=2•1a+c,化简得a2+c2=2b2,

∴a2,b2,c2成等差数列.

8.解:设这四个数为a-3d,a-d,a+d,a+3d,

则由题设得a-3d+a-d+a+d+a+3d=26,a-da+d=40,

解得a=132,d=32,或a=132,d=-32.

∴所求四个数为2,5,8,11或11,8,5,2.

9.解:设某单位需购买影碟机n台,在甲商场购买每台售价不低于440元时,售价依台数n成等差数列{an}.

an=780+(n-1)(-20)=800-20n,解不等式an≥440,800-20n≥440,得n≤18.

当购买台数小于18时,每台售价为800-2n元,在台数大于或等于18时,每台售价440元.

到乙商场购买,每台售价为800×75%=600(元),作差(800-20n)n-600n=20n(10-n),

当n=10时,600n=(800-20n)n;

当n>18时,440n<600n.

⬮ 等差数列方程思想总结 ⬮

请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b的等差中项.    例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25. 思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25. 思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.   [例2](1)求等差数列8,5,2…的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项. 答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.   Ⅲ.课堂练习1.(1)求等差数列3,7,11,……的'第4项与第10项.   (2)求等差数列10,8,6,……的第20项.   (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d; (2)已知a3=9,a9=3,求a12. Ⅳ.课时小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。 Ⅴ.课后作业 课本P39习题  1,2,3,4

⬮ 等差数列方程思想总结 ⬮

数学教案-等差数列_高一数学教案_模板

§等差数列

目的:1.要求学生掌握等差数列的概念

2.等差数列的通项公式,并能用来解决有关问题。

重点:1.要证明数列{an}为等差数列,只要证明an+1-an等于常数即可(这里n≥1,且n∈n*)2.等差数列的通项公式:an=a1+(n-1)d(n≥1,且n∈n*).3.等到差中项:若a、a、b成等差数列,则a叫做a、b的等差中项,且

难点:等差数列“等差”的特点。公差是每一项(从第2项起)与它的前一项的关绝对不能把被减数与减数弄颠倒。

等差数列通项公式的含义。等差数列的通项公式由它的首项和公差所完全确定。换句话说,等差数列的首项和公差已知,那么,这个等差数列就确定了。过程:

一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,……,,…… 12,9,6,3,……

特点:从第二项起,每一项与它的前一项的差是常数—“等差” 二、得出等差数列的定义:(见p115)

注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:ap 首项

公差

2.若

则该数列为常数列

3.寻求等差数列的通项公式:

由此归纳为

当 时

(成立)

注意: 1° 等差数列的通项公式是关于 的一次函数

2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若

它是以 为首项,为公差的ap。

3° 公式中若

则数列递增,则数列递减

4° 图象: 一条直线上的一群孤立点

三、例题: 注意在 中,,四数中已知三个可以

求出另一个。例1(p115例一)

例2(p116例二)注意:该题用方程组求参数 例3(p116例三)此题可以看成应用题 四、关于等差中项: 如果 成ap 则

证明:设公差为,则

例4 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。

解一:∵ ∴ 是-1与7 的等差中项 ∴

又是-1与3的等差中项 ∴

又是1与7的等差中项 ∴

解二:设

∴所求的数列为-1,1,3,5,7 五、判断一个数列是否成等差数列的常用方法

1.定义法:即证明

例5、已知数列 的前 项和,求证数列 成等差数列,并求其首项、公差、通项公式。

解:

当 时

时 亦满足 ∴

首项

∴ 成ap且公差为6 2.中项法: 即利用中项公式,若 则 成ap。

例6 已知,成ap,求证,也成ap。

证明: ∵,成ap

∴ 化简得:

=

∴,也成ap 3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。

例7 设数列 其前 项和,问这个数列成ap吗?

解: 时 时

∴ 数列 不成ap 但从第2项起成ap。

五、小结:等差数列的定义、通项公式、等差中项、等差数列的证明方法 六、作业: p118习题3.2 1-9 七、练习:

1.已知等差数列{an},(1)an=2n+3,求a1和d(2)a5=20,a20=-35,写出数列的通项公式及在数列{an}中,an=3n-1,试用定义证明{an}是等差数列,并求出其公差。

注:不能只计算a2-a1、a3-a2、a4-a3、等几项等于常数就下结论为等差数列。

3.在1和101中间插入三个数,使它们和这两个数组成等差数列,求插入的三个数。

4.在两个等差数列2,5,8,…与2,7,12,…中,求1到200内相同项的个数。

分析:本题可采用两种方法来解。

(1)用不定方程的求解方法来解。关键要从两个不同的等差数列出发,根据 相同项,建立等式,结合整除性,寻找出相同项的通项。

(2)用等差数列的性质来求解。关键要抓住:两个等差数列的相同项按原来的前后次序仍组成一个等差数列,且公差为原来两个公差的最小公倍数。

5.在数列{an}中, a1=1,an= ,(n≥2),其中sn=a1+a2+…+an.证明数列是等 差数列,并求sn。

分析:只要证明(n≥2)为一个常数,只需将递推公式中的an转化 为sn-sn-1后再变形,便可达到目的。

6.已知数列{an}中,an-an-1=2(n≥2), 且a1=1,则这个数列的第10项为()

a 18 b 19 c 20 d21 7.已知等差数列{an}的前三项为a-1,a+1,2a+3,则此数列的公式为()

a 2n-5 b 2n+1 c 2n-3 d 2n-1 8.已知m、p为常数,设命题甲:a、b、c成等差数列;命题乙:ma+p、mb+p、mc+p 成等差数列,那么甲是乙的()

a 充分而不必要条件 b 必要而不充分条件

c 充要条件 d既不必要也不充分条件 9.(1)若等差数列{an}满足a5=b,a10=c(b≠c),则a15=

(2)首项为-12的等差数列从第8项开始为正数,则公差d的取值范围是

(3)在正整数100至500之间能被11整除的整数的个数是

10.已知a5=11,a8=5,求等差数列{an}的通项公式。11.设数列{an}的前n项sn=n2+2n+4(n∈n*)(1)写出这个数列的前三项a1,a2,a3;(2)证明:除去首项后所成的数列a2,a3,a4…是等差数列。

12.已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?

13.若关于x的方程x2-x+a=0和x2-x+b=0(a≠b)的4个根可以组成首项为 的等到差数列,求a+b 的值。

教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具

投影仪,多媒体软件,电脑.教学方法

讨论、谈话法.教学过程 一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,,-,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列.(这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)

1.等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.用数学式子表示等比数列的定义.是等比数列

①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列

?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.3.等比数列的通项公式(板书)

问题:用 和 表示第 项.①不完全归纳法

.②叠乘法,…,这 个式子相乘得,所以.(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式.(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.四、作业(略)五、板书设计

三.等比数列 1.等比数列的定义 2.对定义的认识

3.等比数列的通项公式 (1)公式

(2)对公式的认识

教学目标

(1)掌握 与()型的绝对值不等式的解法.

(2)掌握 与()型的绝对值不等式的解法.

(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;

(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;

教学重点:

型的不等式的解法;

教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 学生活动 设计意图 一、导入新课

?提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 【概括】

口答

绝对值的概念是解 与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫. 二、新课

?导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来.

?讲述】求绝对值等于2的数可以用方程 来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2. 【提问】如何解绝对值方程 .

?设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示? 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式 的解集就是表示数轴上到原点的距离小于2的点的集合.

?设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

?质疑】 的解集有几部分?为什么 也是它的解集?

?讲述】 这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以 是 解集的一部分.在解 时容易出现只求出 这部分解集,而丢掉 这部解集的错误. 【练习】解下列不等式:(1);(2)

?设问】如果在 中的,也就是 怎样解?

?点拨】可以把 看成一个整体,也就是把 看成,按照 的解法来解.

所以,原不等式的解集是

?设问】如果 中的 是,也就是 怎样解?

?点拨】可以把 看成一个整体,也就是把 看成,按照 的解法来解.,或,由 得

由 得

所以,原不等式的解集是

口答.画出数轴后在数轴上表示绝对值等于2的数. 画出数轴,思考答案

不等式 的解集表示为

画出数轴 思考答案

不等式 的解集为

或表示为,或

笔答(1)

(2),或

笔答 笔答

根据绝对值的意义自然引出绝对值方程()的解法.

由浅入深,循序渐进,在()型绝对值方程的基础上引出()型绝对值方程的解法. 针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑. 落实会正确解出 与()绝对值不等式的教学目标. 在将 看成一个整体的关键处点拨、启发,使学生主动地进行练习.

继续强化将 看成一个整体继续强化解 不等式时不要犯丢掉 这部分解的错误. 三、课堂练习解下列不等式:(1);(2)

笔答(1);(2)

检查教学目标落实情况. 四、小结的解集是 ; 的解集是

解 绝对值不等式注意不要丢掉 这部分解集.

或 型的绝对值不等式,若把 看成一个整体一个字母,就可以归结为 或 型绝对值不等式的解法. 五、作业

1.阅读课本 含绝对值不等式解法. 2.习题 2、3、4 课堂教学设计说明

1.抓住解 型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.

2.在解 与 绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.

3.针对学生解()绝对值不等式容易出现丢掉 这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.

(第二课时)一、教学目标

1.掌握平面向量的数量积的运算律,并能运用运算律解决有关问题;

2.掌握向量垂直的充要条件,根据两个向量的数量积为零证明两个向量垂直;由两个向量垂直确定参数的值;

3.了解用平面向量数量积可以处理有关长度、角度和垂直的问题;

4.通过平面向量的数量积的重要性质及运算律猜想与证明,培养学生的探索精神和严谨的科学态度以及实际动手能力;

5.通过平面向量的数量积的概念,几何意义,性质及运算律的应用,培养学生的应用意识.

二、教学重点平面向量的数量积运算律,向量垂直的条件;

教学难点平面向量的数量积的运算律,以及平面向量的数量积的应用.三、教学具准备

投影仪 四、教学过程

1.设置情境

上节课,我们已经给出了数量积的定义,指出了它的(5)条属性,本节课将研究数量积作为一种运算,它还满足哪些运算律?

2.探索研究

(1)师:什么叫做两个向量的数量积?

生:(与 向量的数量积等式 的模 与 在 的方向上的投影 的乘积)

师:向量的数量积有哪些性质?

生:(1)

(2)

(3)

(4)

(5)

(6)

师:向量的数量积满足哪些运算律?

生(由学生验证得出)

交换律:

分配律:

师:这个式子 成立吗?(由学生自己验证)

生:,因为 表示一个与 共线的向量,而 表示一个与 共线的向量,而 与 一般并不共线,所以,向量的内积不存在结合律。

(2)例题分析

?例1】求证:

(1)

(2)

分析:本例与多项式乘法形式完全一样。

证:

注:(其中、为向量)

答:一般不成立。

?例2】已知,与 的夹角为,求.解:∵

注:与多项式求值一样,先化简,再代入求值.【例3】已知,且 与 不共线,当且仅当 为何值时,向量 与 互相垂直.

分析:师:两个向量垂直的充要条件是什么?

生:

解: 与 互相垂直的充要条件是

∴ 当且仅当 时,与 互相垂直.

3.演练反馈(投影)

(1)已知,为非零向量,与 互相垂直,与 互相垂直,求 与 的夹角.

(2),为非零向量,当 的模取最小值时,①求 的值;

②求证: 与 垂直.

(3)证明:直径所对的圆周角为直角. 参考答案:

(1)

(2)解答:①由

当 时 最小;

②∵

∴ 与 垂直.(3)如图所示,设,(其中 为圆心,为直径,为圆周上任一点)

∵,∴

即 圆周角

4.总结提炼

(l)

(2)向量运算不能照搬实数运算律,如结合律数量积运算就不成立.

(3)要学会把几何元素向量化,这是用向量法证几何问题的先决条件.

(4)对向量式不能随便约分,因为没有这条运算律. 五、板书设计 课题:

1.数量积性质 2.数量积运算律 例题 1 2 3 演练反馈 总结提炼

⬮ 等差数列方程思想总结 ⬮

一、教材分析

1、教材的地位和作用:

《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导

②用数学思想解决实际问题

二、学情教法分析:

对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解

三、学法分析:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学过程

1.创设情景 提出问题

首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式

⬮ 等差数列方程思想总结 ⬮

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。难点:

①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

⬮ 等差数列方程思想总结 ⬮

依据课标,以及学生现有知识和本节教学内容,制定教学目标如下:

1.教学目标:

(1)知识与技能目标:(ⅰ) 初步掌握等差数列的前项和公式及推导方法;

(ⅱ) 当以下5个量(a1,d,n,an,Sn)中已知三个量时,能熟练运用通项公式、前n项和公式求其余两个量。

(2)过程与方法目标:通过公式的推导和公式的应用,使学生体会数形结合的思想方法,体验从特殊到一般,再从一般到特殊的思维规律。

(3)情感态度与价值观:通过经历等差数列的前项和公式的探究活动,培养学生探索精神和创新意识,提高学生解决实际问题的观念,激发学生的学习热情。

2.教学重、难点

等差数列前项和公式的推导有助于培养学生的发散思维,而且在应用公式的过程中体现了方程(组)思想,所以等差数列前项和公式的推导和简单应用是本节课的重点。但由于高二学生推理能力有待提高,所以难点在于一般等差数列前项和公式的推导方法上。

⬮ 等差数列方程思想总结 ⬮

1、用倒序相加法求数列的前n项和。

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。

2、用公式法求数列的前n项和(等差数列公式求和公式:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2)。

对等差数列,求前n项和Sn可直接用等差数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

3、用裂项相消法求数列的前n项和。

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

 4、用构造法求数列的前n项和。

所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

本文来源:https://www.gsi8.com/gongzuozongjie/93075.html