幂函数的课件
时间:2025-04-25 作者:工作汇报网幂函数的课件(通用14篇)。
在八年级的教师需要制定关于函数的教学,那么都有哪些好的课件呢?下面是小编分享给大家的八年级上册数学函数课件,欢迎阅读。
幂函数的课件 篇1
高中课改正在进行之中,我作为教育战线的一名新成员,面对新的工作,新的角色,充满了希望和挑战,为了使自己新的工作能有计划的进行,特制定以下高中教师个人。
一、不断提高个人素质
一名教师必须有较高的素质,我的教学经验欠缺,所以新课改对我来说是一种挑战,同时也是一次难得的锻炼机会,为了尽快的适应并做好新的工作我必须不断的提高自己的素质。
,读书--用教育理论武装自己。为了自己的教学教育尽快的提高,读书是一种至关重要的途径,所以我在本学期要坚持读有关教育的.书籍。
2,同伴互助--提高自己的教学。作为一名年轻教师,我要积极向同伴学习,多走进同组教师和优秀教师的课堂,多向同组教师学习,不耻下问。并积极参加每周的教研,就当天发生的教学突发事件,教学感悟反思,学生的思想问题及解决方法等于同组教师交流学习。把握组内开展的各种学习机会,向同组教师学习。在同伴互助的基础上提高自己的教学质量。
3,尝试课堂创新改革传统的教学方式--教师教学生学,学生的学习兴趣不高,而且不能充分培养学生的探究能力。在本学期中,我将运用多种灵活的教学方法,来激发学生的学习兴趣,在教学中对教材要认真分析,认真设计每一节课,并及时对每节课进行反思,认真分析课堂和班级管理中出现的问题,并及时进行反思记录,争取一学期下来能有一篇较高质量的反思和教学。
4,参加教科研活动。
二、德育
结合学生的实际情况和学生的年龄特点我将对学生从多方面进行进行德育教育,尽快使学生进入学习状态,并逐步转变一些学生的现存的不足之处,对学习产生兴趣,并作对生活充满希望和信心的孩子。
,情感交流--沟通能促进师生的情感,对班级管理有很大的帮助。及时与学生谈心,了解学生的内心世界,从思想上转变每位学生。
2,与家长沟通--作为教师,为了尽快了解学生,及时了解学生的在家的学习工作情况,我会通过多种形式与家长取得联系,及时沟通。
面对新的工作环境我充满了信心,也有许多自己的设想,我将带着我的激情步入教育教学,在实践中摸索,在实践中成长,在实践中创新。
幂函数的课件 篇2
本学期,我认真践行校本教研工作,融入学校教育创新,借助同伴互助提升教育理念,感悟教育真谛。我个人的校本研修计划如下:
一、指导思想
通过校本教研,促进基础教育课程改革向纵深发展,积极推进素质教育,充分发挥教师的专业引领作用,努力提高我的整体教学水平。
二、研修目标
1、加强学习,探索教育教学规律。
2、加强学习,积累研究课题的经验。
3、通过研修,掌握课堂教学技巧,提高课堂教学艺术。
4、通过研修,丰富教学经验,能上好每一节的数学课。
5、通过研修,掌握教学基本功,更好地为教学服务。
三、研修要求:
以新的教育理念为指导,以课程改革实验研究为重点,以促进师生共同发展为目的,以改革课堂教学为突破口。把立足点放在解决教学改革和实验中所遇到的实际问题上;着眼点放在理论与实践的结合上;切入点放在教师教学方式和学生学习方式的转变上;增长点放在促进学校、师生的共同发展上,使教育从传统教学的.“三个中心”(即以教师为中心、以课堂为中心、以课本为中心)向新课程标准要求的“三个为本”(即以学生为本,以能力发展为本,以自主学习为本)的转变,重视学生创新精神和实践能力的培养,为学生的全面发展和终身发展服务,使自己及同伴们转变成素质优良、能适应社会需求、能促进学生全面发展的好。
四、具体措施:
1、加强理论学习,丰富理论基础。每周不少于2小时用于学习教育教学理论。
2、加强业务学习,探索教育教学规律,学习新的数学思想、教学方法等。
3、注重日常教学常规的扎实与提升。认真完成学习任务,做好每一次听课后记录。学会思考教育问题,积极把先进的教育理念转化为教师的行为等,从反思中提升教学研究水平。每节公开课后,把自己在教学实践中发现的问题和有价值的东西赶快记下来,享受成功,弥补不足。在总结经验中完善自我。
4、坚持写好教育教学随笔。认真的读一本有关教育的书籍,并及时反思。
5、利用信息技术手段辅助教学,充分利用网络优势,积极参与在线研讨。
6、加强常规研究,规范教学行为。坚持听课,只要有时间就向有经验的老师学习,通过听课、评课等多种形式的锻炼,使自己尽快适应新的教学方法。
7、积极参加各级各类的培训学习活动,提升自我。通过参加市省国家级各级各类教学相关培训,拓宽自己的知识面,提高自己的教育教学艺术,提高自己的学识修养,促进自身专业化成长。
8、加强网络学习,提高自身素养。教学中所遇问题不懂就问,一问有教学经验的老师,二问信息量非常丰富的网络,网络求学。网络,是最好的老师!
我对自己的专业水平有一个清醒的认识,我决心不断学习,不断更新,丰富自己的文化积淀,充盈自己的底气,增强自己的理论底蕴,提高教育教学能力,结合教学实际,把个人的校本研修工作做好。
幂函数的课件 篇3
尊敬的各位评委、老师们:
大家好!今天我来说说《对数函数》这节课的教学设计。
一、教材地位与作用
《对数函数》是高中数学函数领域的重要组成部分。它是在指数函数的基础上,进一步拓展函数的类型和应用范围。对数函数不仅在数学学科内有着广泛的应用,如在数学分析、代数方程求解等方面,而且在其他学科如物理学、化学等中也经常出现,用于解决各种实际问题。
二、学情分析
学生在学习本节课之前,已经对函数的基本概念、性质和研究方法有了一定的了解,并且掌握了指数函数的相关知识。然而,对数函数的抽象性和其独特的性质,可能会使学生在理解和掌握上存在一定的困难。特别是对数函数的单调性和对数运算的'综合应用,需要学生进行深入的思考和练习。
三、教学目标设定
知识技能目标:学生能准确理解对数函数的概念,熟练掌握对数函数的图象和性质,能够运用对数函数的知识解决相关的数学问题和实际问题。
过程方法目标:通过对对数函数的探究,培养学生的自主学习能力、合作探究能力和创新思维能力。
情感态度目标:激发学生对数学的热爱,培养学生勇于探索、敢于创新的精神,增强学生的学习自信心。
四、教学方法选择
情境创设法:创设与对数函数相关的实际情境,如人口增长模型、放射性物质衰变等,让学生在情境中感受对数函数的应用价值,激发学生的学习兴趣。
探究式教学法:引导学生自主探究对数函数的图象和性质,通过观察、分析、归纳等方法,培养学生的探究能力。
分层教学法:根据学生的学习能力和基础,设计分层练习和作业,满足不同层次学生的学习需求。
五、教学过程安排
情境导入:展示与对数函数相关的实际问题,引导学生思考如何用数学知识解决这些问题,从而引出对数函数的概念。
概念讲解:详细讲解对数函数的定义、定义域、值域等基本概念,结合具体例子帮助学生理解。
图象绘制与性质探究:让学生通过列表、描点、连线的方法绘制对数函数图象,观察图象变化,探究对数函数的性质,如单调性、奇偶性等。
分层练习:设计基础练习、提高练习和拓展练习,让不同层次的学生都能得到锻炼和提高。
课堂总结:引导学生回顾本节课所学内容,总结对数函数的概念、图象和性质,强调重点和难点。
作业布置:布置分层作业,包括书面作业和实践作业,让学生巩固所学知识,提高应用能力。
以上就是我的说课内容,感谢大家的聆听!
幂函数的课件 篇4
教学目的:
1.了解常量与变量的意义,能分清实例中的常量与变量;
2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式;
3.培养学生观察、分析、抽象、概括的能力;
4.对学生进行相互联系、绝对与相对、运动变化的辩证唯物主义观点的教育和爱国、爱党、爱人民的教育,数学教案-函数。
教学直点:
函数概念的形成过程。
教学难点:
理解函数概念。
教具:
多媒体。
教学过程:
一、创设情境
首先请同学们看一组境头:(微机播放今夏抗洪片段)唤起学生对今夏洪水的回忆,对学生渗透爱国、爱党、爱人民的教育。
二、形成概念
(一)变量与常量概念的形成过程
1.举例、归纳
引例1:沙市今夏7、8两个月的水位图(微机示图)
学生观察水位随时间变化的情况,(微机示意)引出“变量”。
引例2:汽车在公路上匀速行驶(微机示意)
学生观察汽车匀速行驶的过程,加深对变量的认
识,引出“常量”。
设问:一个量变化,具体地说是它的什么在变?什么不变呢?(微机显示:下方汽车匀速行驶,上方S的值随t的值变化而变化。)
引导学生观察发现:是量的数值变与不变。
归纳变量与常量的定义并板书。
2.剖析概念
常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取植情况。
3.巩固概念
练习一:
1.向平静的.湖面投一石子,便会形成以落水点为圆心的一系列同心圆(微机示意)。①在这个变化过程中,有哪些变量?②若面积用S,半径用R表示,则S和R的关系是什么?;π是常量还是变量?③若周长用C,半径用R表示,C与R的关系式是什么?
2.(见课本第92页练习1)(Www.jym1.Com 句怡美)
学生回答后指出:常量与变量不是绝对的,而是对于一个变化过程而言的。
(二)自变量与函数概念的形成过程
1.举例、归纳
(微机一屏显示两个引例)学生再次观察引例1、2两个变化过程,寻找共同之处:①一个变化过程,②两个变量,③一个量随另一个量的变化而变化。
若两个量满足上述三个条件,就说这两个量具有函数关系。(引出课题并板书)
设问:上述第三条是形象描述两个变量的关系,具体地说是什么意思?
以引例2说明:(微机示意)
设问:在S=30t中,当t=0.5时,S有没有值与它对应?有几个?
反复设问:t=l,1.5,2,3……时呢?
引导学生观察发现:对于变量t的每一个值,变量S都有唯一的值与它对应。所以两个变量的关系又可叙述为:对于一个变量的每一个值,另一个变量都有唯一的值与它对应。即一种对应关系。(微机出示)
在s=30t中,s与t具有这种对应关系,就说t是自变量,S是t的函数。引出“自变量”、“函数”。
归纳自变量与函数的定义并板书,初中数学教案《数学教案-函数》。
2.剖析概念
理解函数概念把握三点:①一个变化过程,②两个变量,③一种对应关系。判断两个量是否具有函数关系也以这三点为依据。
3.巩固概念
练习二:
l)某地某天气温如图:(微机示图)气温与时间具有函数关系吗?
学生回答后指出这里函数关系是用图象给出的。
2)宜昌市某旅游公司近几年接待游客人数如表:(微机示表)游客人数与时间具有函数关系吗?学生回答后指出这里函数关系是用表格给出的。
3)在S=?d中,S与R具有函数关系吗?C=ZπR中,C与R呢?(微机显示变化过程)学生回答后指出这里函数关系是用数学式子结出的。
4)师生共同列举函数关系的例子。
三、例题示范
(微机出示例1,并演示篱笆围成矩形的过程。)
指导:1.篱笆的长等于矩形的周长;2.S与1的关系式,即用1的代数式表示S;3.表示矩形的面积,需先表示矩形一组邻边的长。
解题过程略。
变式练习:
用60m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,(微机示意)
1.写出矩形面积s(m?)与平行于墙的一边长l(m)的关系式;
2.写出矩形面积s(m?)与垂直于墙的一边长l(m)的关系式。并指出两式中的常量与变量,函数与自变量。
四、反馈练习(微机示题)
五、归纳小结
1.四个概念:常量与变量,函数与自变量。
2.两个注意:①判断常量与变量看两个方面。②理解函数概念把握三点。
六、布置作业
1.必做题:课本第95页,练习1、2.
2.思考题:
①在 y= 2x+l中,y是x的函数吗??=x中,y是X的函数吗?
②引例2的s=30t中,t可以取不同的数值,但t可以取任意数值吗?
教案设计说明
根据本节内容的特点——抽象、难懂的概念深。
我按以下思路设计本课:坚持以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。教学过程特突出以下构想:
一、真景再现,引人入胜
上课后,首先播放一组动人的抗洪镜头,把学生分散的思维一下子聚拢过来,学生情绪、课堂气氛调控到最佳状态,为新课的开展创设良好的教学氛围。因为它真实、贴近学生的生活,所以唤起他们对今夏所遭受的那场特大洪水的回忆,教师有机地对学生渗透爱国、爱党、爱人民的教育。
二、过程凸现,紧扣重点
函数概念的形咸过程是本节的重点,所以本节突出概念形成过程的教学,把过程分为三个阶段:归纳、剖析与巩固。第一阶段里举学生熟悉的、形象生动的例子,引导学生观察、分析尔后归纳。第二阶段里帮助学生把握概念的本质特征,提出注意问题。第三阶段里引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。引导学生从运动、变化的角度看问题时,向学生渗透辩证唯物主义观点的教育。
三、动态显现,化难为易
函数概念的抽象性是常规教学手段无法突出的,为了扫除学生思维上的障碍,本节充分发挥多媒体的声、像、动画特征,使抽象的问题形象化,静态方式的动态化,直观、深刻地揭示函数概念的本质,突破本节的难点。同时教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。
四、例子展现,多方渗透
为了使抽象的函数概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维、加强学科间的渗透,知识问的联系,也增强学生学数学、的意识。
幂函数的课件 篇5
一、学情分析
从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。优秀率仅仅只有 13%,而合格率也只达到 40%,两极分化的现象再一次增大,与我预期的目标有较大的差距。通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。
二、指导思想
坚持党的教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向 45 分钟要质量。一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。并通过本学期的课堂教学,完成八年级下册的数学教学任务。
三、教材目标及要求:
1、 二次根式的重点是二次根式的运算,难点是根式四则混算及实际应用。
2、勾股定理:会用勾股定理和逆定理解决实际问题。其性质解决一些实际问题。
3、一次函数的重点是掌握一次函数的概念、性质,理解变量与常量的辩证关系,进一步认识数形结合的思维方法,并利用
4、平行 四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
要求:知识技能目标:掌握二次根式的概念、性质及计算;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;学习一次函数的图像、性质与应用;会分析数据并从中获取总体信息。
过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。班级教学目标:优秀率:15%;合格率:55%。
四、教材分析
第十六章 二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。
第十七章 勾股定理:本章主要探索直角三角形的三边关系,学习勾股定理及勾股定理的逆定理,学会利用三边关系判断一个三角形是否为直角三角形。教学重点:勾股定理及勾股定理的逆定理的理解与应用。教学难点:探索直角三角形三边关系时,理解勾股定理及勾股定理的逆定理。
第十八章 平行四边形:本章主要探究两类特殊的四边形的性质与判定,即平行四边形和梯形有关的性质与判定。教学重点:平行四边形的定义、性质和判定;特殊平行四边形(矩形、菱形、正方形)的性质与判定;梯形及特殊梯形(等腰梯形)的性质与判定。教学难点:平行四边形的性质与判定及其应用;特殊平行四边形的性质与判定及其应用;等腰梯形的'性质与判定及其应用。
第十九章 一次函数:本章主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。第二十章 数据的分析:本章主要学习平均数、中位数和众数,理解它们所反映出的数据的本质。教学重点:求平均数、中位数与方差;理解平均数、中位数和众数所表达的含义;区别算术平均数与加权平均数之间的联系和区别。教学难点:求加权平均数、中位数和方差;根据平均数、加权平均数、中位数、众数、极差和方差对数据作出比较准确的描述。
五、教学措施
1、课前作好充分准备,备好教材,备好学生。精心设计探究问题,认真讲解方法概念,深入分析思维模式,做到重点突出,难点透彻。
2、加强课后总结和对学生的课后辅导。认真总结每一堂课的成败得失,深入学生了解课堂教学的实际效果,耐心辅导存在问题的学生。
3、搞好单元测试及试卷分析,针对试卷中存在的问题,及时采取行之有效的补救措施,切实解决学生数学学习中存在的困惑。
幂函数的课件 篇6
一、 制定计划的目的
为使学生学好当代社会生活中每一位公民适应日常生活、参加社会生产和进一步学习所必须的代数、几何的基础知识与基本技能,进一步培养学生的运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识。
二、 教材内容分析
本学期数学内容包括第一章《勾股定理》、第二章《实数》、第三章《位置与坐标》、第四章《一次函数》、第五章《二元一次方程组》、第六章《数据的分析》。
第一章《勾股定理》的主要内容是勾股定理的探索和应用。期中勾股定理的应用是本章教学的重点。
第二章《实数》的主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。
第三章《位置与坐标》的主要内容是直角坐标系的建立。重点和难点是坐标变换与轴对称。
第四章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。
第五章《二元一次方程组》要求会解二元一次方程组,并用二元一次方程组来解决一些实际问题。
第六章《数据的分析》主要讲平均数和中位数、众数的概念,会求平均数和能找出中位数和众数。
三、教学目标
1、能正确理解二次根式的`概念,掌握二次根式的基本运算,并能熟练进行二次根式的化简。
2、掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。掌握二次根式的化简,进一步提高学生的运算能力。
3、理解一次函数的概念,掌握一次函数的图像和表达式,会用一次函数解决一些实际问题。
四、教学措施及方法
1、成立学习小组,实行组内帮辅和小组间竞争,增强学生的信心及自学能力。
2、注重双基和学法指导。
3、积极尝试新的教学方法和先进的教学手段。
4、多听课,向其他老师学习。
五、本学期教学进度计划
第一、二周:第一章《勾股定理》
第三、四、五周:第二章《实数》
第六、七、八周:第二章《实数》的复习和第三章《位置与坐标》
第九、十周:复习前三章,迎接期中考试
第十一、十二周:第四章《一次函数》
第十三、十四、十五周:第五章《二元一次方程组》
第十六周:第五章复习
第十七、十八周:第六章《数据的分析》
第十九周:综合实践
第二十、二十一、二十二周:总复习迎接期末考试
幂函数的课件 篇7
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础.一些着重在什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和sn.有q1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。
例如,高一(下)p26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的学生对数学学习普遍存在困难,且部分学生学习主动性不强,习惯较差,复习任务很艰巨。
二、复习指导思想
以现代教育理论,课程标准和考试指导纲要为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育;以基本知识、基本技能、基本思想和基本方法为基础,夯实基础,突出重点,突破难点,完善体系,构筑知识网络;以课堂教学为重点,结合知识与能力要求及学生实际,采用小步子、递进式教学模式,科学安排教学内容与教学难度,改革教学方法,提高课堂教学效益;以检查落实为切入口,不走过场,抓好落实,收到实效;以培优辅差为特色,让优生更优,让有弱科的学生克服瓶颈与木桶现象的不足,脱颖而出;争取本学年高三数学教学上一个新台阶。
三、教学目的要求
第一轮为系统复习,时间为第一学期,大约在三月初结束。此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些最基本的数学意识,掌握一些最基本的数学方法。同时加强章、节知识过关,注重训练的规范性,思考的严密性,有意识进行一定的综合训练,先小综合再大综合,适当地提升学生综合运用能力。
第二轮为专题复习与综合考试相结合,是在前一阶段基础上的深化与提高,时间安排在第二学期的3月(中,下)、4月、5月初。要精选专题,紧扣高考内容,抓紧高考热点与重点,授课时脚踏实地,讲透内容,重点在沟通数学各知识体系之间的内在联系,提高综合运用数学知识和方法解决问题的能力;加强针对性训练与测评,查漏补缺,既提高解决综合题的'分析与解题能力,又能调适心理,使学生进入一个良好的心理和竞技状态。
第三轮为应试训练,主要功能是培养对高考的适应能力和积累应试经验。要求回归课本,再现知识点,巩固所学,加强信息的收集与整理。通过规范训练,发现复习中的薄弱点和易错点,查漏补缺,调控心态,轻松应考。
四、教学具体措施
1、深入钻研教材,准确解读课程标准,一轮复习从教材和学生实际出发,采取低起点、小步子,适当提升的方式,连接高考,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2、认真研究近三年的高考试题,准确把握考试说明,在整体上把握高考的重点、难点、热点,特别注意知识点的广度和深度及能力要求,控制好教学的广度和难度,夯实重点,突破难点,找准切入点,科学规划教学内容和教学时间。
3、加强备课。
1)备基本知识、基本技能、基本思想、基本方法;
2)备重点、难点、热点,备广度和深度;
3)备学生的实际,备教学的切入点,备教学的针对性;
4)精选例题和训练题:
a)注重对四基五能力的考察把握,贴近课本;
b)注重学科内容的联系与综合;
c)注重数学思想方法、通性、通法,淡化特殊技巧;
d)注重能力立意,以考察学生逻辑思维能力为核心,全面考察能力;
e)注重考查学生的创新意识和实践能力,设计应用性、探索性的问题;
f)体现层次性、基础性,梯度安排合理,坚持多角度,多层次的考察,有效地检测对数学知识中所蕴含的数学思想和方法掌握的程度、
g)体现典型性和全面性,便于归纳总结;
h)立足基础,不做数学考试说明以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试说明的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试说明的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。切实做好课堂练习、例题、作业、周练,月考的精选工作,提高解题能力,积累经验,发现问题及时补救,强化复习效果。
5)课程教学安排。
要提高高三数学复习的效益,必须加强复习课的模式研究。在有限的时间内最大限度地提高学生的学习效益,要求我们课堂上既要讲题,又要讲法,注意知识的梳理,形成条理、系统。不仅要讲本课的重点、难点,更要讲学生的易错点,要引导学生对知识横向推广、纵向引申,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程,甚至是思考中的弯路和教训。总之,不断探索有效的课堂教学模式,促进学生学习方式的转变。协调好讲、练、评、辅之间的关系,一轮复习教学的基本模式为:知识检查梳理基础练习典型例题归纳总结巩固练习作业课后反思
基础练习:一般5道题左右,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完,此练习在课前完成(以前基础练习在课堂内完成,课堂教学没有高度,导致尖子生吃不饱)。
典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1——2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力,要注意方法的升华。例1,例2在课前完成。
巩固练习:一般4道左右,对应例题类型;作业:下本节课的基础问题及例1、例2,本节课典型问题一至二道。课后反思:重点检查改错本及复习资料上的作业。
幂函数的课件 篇8
为了更好的让知识走进课堂,教育学习所获的校能及学习所得,也为了提高自己的综合素质,提高自身的教育水平,提高自己的教学修养,使自己的教育教学水平在这次的校本研修中得到质的飞跃和提升,我根据学习任务及要求,结合实际,因地制宜,制定自己的个人计划如下:
一、学习内容
(一)个人读书
1、精读教育教学方面的专著,充实自己。
2、制订个人研修计.
3、根据业务学习内容整理自己的学习笔记。
4、做好学科知识的更新。
5、结合“教案反思与研究,写一篇自己的感受
6、每学期完成学习笔记不少于6次。
(二)听评课
积极参加学校组织的听评课活动,有机会积极参加上级组织的观摩课活动。做好听课记录,听课反思,在学习中补充自己的不足,使自己的教学更加的完整。
(三)公开课:
学校组织的公开课活动中,学习讲课老师利用多媒体课件,在课堂中的应用。
二、研修目标
1、通过研修,进一步了解新课改中备课的内涵,量体裁衣地做好自己的教学设计;
2、能深度建构教学法内容生成教学过程;
3、力求课堂教学实效性,并能不断审视自己的'教学、扬长避短,使自己的教育教学逐渐完美。
三、学习形式
以参加学校校本研修活动为主,个人自主研修为辅,在学校安排下,统一内容,统一进度,有组织有计划地进行学习。根据学习内容,结合实际教学情况,反思自己的教育教学行为,并进行实践。在自学的同时,要做好重点突出的学习笔记。
1、专题培训
交流研讨,教学设计、说、讲、评课等形式,将培训学习与自己的教育教学实践紧密结合起来。
2、网上学习
充分利用信息技术知识的网络资源优势,在网上查找所需学习资料,进行互相学习和交流。
3、远程教育资源应用
通过应用远程教育资源,学习名师的课堂教学过程,整合与选择好的课件,引入自己的课堂,让枯燥的课堂教学“活”起来,有助于学生从感官上更直接的了解所学知识,从而达到教学目的。
四、研修主要措施
1、认真参加集体组织的学习培训,作好培训记录。
2、参加学习的校本研修活动,吸取其他老师的成功经验。
3、精心准备自己的研修课程,发挥信息技术特长,努力提升使用现代教学设备的能力。
4、空余时间利用电脑进行网络研修。
幂函数的课件 篇9
这学期,我继续接任一年级数学教学工作。本学期,我继续以的高效课堂教学方法,塑造出一批善于思考、勇于实践,具有较高数学素养的学生群体,构建动态生成、充满活力的数学课堂。
我计划从以下几方面进行:
首先在思想方面:
我将始终如一地热爱我们的学校,拥护和支持校领导的各项工作安排,热爱本职工作。注重个人道德修养,为人师表,严于律己,关心学生的学习、生活,做学生的良师益友。加强团结,起到表率作用,与同事相处融洽,合作愉快,心往一处想,劲往一处使,组成一个团结协作的大家庭。
其次在课堂教学方面:
我深知课堂才是做教师的根本,是学生快乐学习的乐园。我结合双向五环教学方法,计划从三方面进行课堂教学——说数学、做数学、用数学。
“说数学”指数学交流。课堂上师生互动、生生互动的合作交流,能够构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维碰撞火花,使不同的学生得到不同的发展。
“做数学”,数学来源于实践,又服务于实践。在数学教学过程中,要不断给予学生实践的机会,让学生在动手动脑中操作,在实践中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发学生求知欲。
“用数学”在数学教学中,我要联系学生的生活实际,让学生在生活中感知数学,从而使学生不再觉得数学是皇冠上的明珠而高不可及,不再觉得数学是脱离实际的海市蜃楼而虚无飘渺。这样,既可加深对数学知识的理解,又能让学生切实体验到生活中处处有数学,体验到数学的价值。
最后我会积极配合班主任孔老师做好学生的安全、思想、生活等方面的工作。
一份耕耘,一份收获。教学工作苦乐相伴。我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把教学工作搞得更好。
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。
二、教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的"亲和力",即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生"看个究竟"的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到"观察""思考""探索"以及用"问号性"图标呈现的"边空"等栏目,利用这些栏目,在知识形过过程的"关键点"上,在运用数学思想方法产生解决问题策略的"关节点"上,在数学知识之间联系的"联点"上,在数学问题变式的"发散点"上,在学生思维的"最近发展区"内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置"观察与猜想"、"阅读与思考"、"探究与发现"等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。
5、新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三、教学任务与目的
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的`数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=logax互为反函数(a0,a≠1)。通过实例,了解幂函数的概念;合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。
3、合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的构特征,并能运用这些特征描述现实生活中简单物体的构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5、以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。
6、在平面直角坐标系中,合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四、教学措施和活动
1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功;
2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念;
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率;
4、与学生多沟通、多交流,真正成为学生的良师益友;
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
幂函数的课件 篇10
对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
本节课主要讲述的是一元二次方程的概念及其一般式。在本节课之前学生已经掌握了一元一次方程的概念以及解法,所以,为本节课一元二次方程概念的学习打下基础。另外,本节课是后续学习解一元二次方程的基础,它的学习起到了很好的铺垫作用。
故而,既锻炼了学生的类比推理能力,还能够完善学生在方程这一部分的知识,让学生在方程这一部分形成比较完善的体系。
二、说学情
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元二次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。
(二)过程与方法
通过解决问题的过程,逐渐形成数学建模的数学思想以及提高类比迁移的能力。
(三)情感态度价值观
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点
理解一元二次方程的概念及其一般式。
(二)教学难点
建立数学模型列方程。
五、说教法和学法
古人云:教学有法,教无定法,贵在得法。这句话说明教学是有一定的方法,但是却没有固定的方法,难能可贵的是选择适合自己以及自己学科的方法。所以,我针对数学学科以及学生等特点,制定了如下的教学方法:讲授法、练习法、小组讨论法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入
首先是导入环节,我采用复习旧知的导入方法。我会让学生回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。在学生充分回忆以后,明确本节课学习初中阶段的最后一种方程,《一元二次方程》。
这样的设计既可以考察学生对之前知识的掌握情况,还能够为今天学习一元二次方程的概念打下基础。
(二)新知探索
接下来是新知探索环节,首先我请学生类比一元一次方程,给一元二次方程下定义。
学生根据已有基础,能够得出一元二次方程文字描述。即方程的两边都是整式,方程中只含有一个未知数,未知数的最高次数是2。
为了加深学生对一元二次方程概念的'理解以及对于一般式的掌握。我出示例1,矩形铁皮长100cm,宽50cm。将四周突出部分折起,制作一个无盖方盒。如果要制作的无盖方盒的底面积为 ,铁皮各角应切去多大的正方形?
学生能够列出方程 ,化简得 。
追问学生,这个方程是不是一元二次方程呢?学生通过判断,让学生再写出几个一元二次方程。
为了加深学生对于一元二次方程的理解,适当的给出反例,让学生判断是否为一元二次方程。所以,我出示题目,用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?并追问,这个方程是不是一元二次方程呢?通过正例和反例的对比,学生对于一元二次方程已经有了非常直观的理解。
通过正例和反例的对比比较,提高学生的辨析能力,而且通过这种辨析,能够加深学生对于概念一般式的理解,在辨析的过程中逐步的形成对概念的认识。达到了循序渐进的目的。
接下来,请学生利用前面的多个方程,让学生以小组讨论的方式思考什么样形式的方程是一元二次方程?在学生讨论的过程中我会加入到学生的讨论当中去,发现问题及时纠正及指导。在学生充分讨论以后,小组派代表进行回答。师生共同总结出:一元二次方程的一般形式是 ,其中 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
对于 这一部分是学生容易忽略的,所以我会加以强调。追问:为什么要规定 呢?由此让学生明确 这一重要条件。
最后简单讲解一下一元二次方程的根的概念。
新课标指出,学生是学习的主体,教师是教学的组织者引导者。在这一过程中,通过适当的引导,放手让学生进行探究,充分体现学生的主体性以及教师的引导性,符合课标这一理念。
(三)课堂练习
第三个环节是课堂练习环节,出示问题,将方程 化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数和常数项。
通过这样一个问题的设置,能够将本节课的重要知识点再进行巩固一遍,巩固对一元二次方程的一般形式的认识,为后面讨论一元二次方程的解法作准备。
(四)小结作业
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结什么是一元二次方程、一般式以及一般式中的注意事项。这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
在作业布置上,我让学生思考一元二次方程应该如何求解呢?通过这样的方式能够为下节课的学习留下悬念,调动学生的积极性。
七、说板书设计
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计。
幂函数的课件 篇11
一、学生基本情况分析
本人本学期共带两个高三年文科班,文科(9)班相对(16)班程度较好,有一部分尖子生,学困生较少,学情基本良好,文科(16)无尖子生,部分学生在学,但无主动性,同时学困生较多,具体表现为不交作业,不记不背,更谈不上综合运用能力。总的看来,文科总体不是很好,学生的基本素质较对于理科班学生有很的差距。
二、本学期提高教学质量的主要教学目标
1、立足教材,把握考纲规定的每个考点所涉及的基础知识。
能力建立在知识的基础上,必须对基础知识做到全面、认真的复习。基础知识主要包括:一是教材中显性的基本知识,即通常所理解的基本概念和原理;二是对教材知识延伸的隐性知识,即教材文字背后的东西,也就是通常所说的知识之间的内在联系;
2、整体把握知识的内在联系,助学生构建知识网络,对知识有整体的把握和理解,从而做到活学活用知识。
3、深化知识,训练和提高学生的解题思维和分析能力。
三、本学期提高教学质量的主要措施
1、会精心准备每一节课。内容包括本节课的高考考点、考点综述、重难点突破,易混点、近年有关本考点的历届高考题、该节课的.馈练习等。
2、提高课堂效率。以教师讲解为主导,教师课堂分析、讲解重点、难点和知识结构以及知识点之间的内在联系,突出学科主干知识,突出知识的条理性、系统性;以学生练习为主线,助学生认识高考试题的特点、分析问题的基本思路和基本方法、组织答案的基本要求等,从而提高学生的解题能力。
3、分层次教学。针对基础较好的学生多给一些时间自由消化,针对基础薄弱的学生,课下教师亲自检查对重要观点进行强化记忆。
4、发挥课代表的作用,自觉组织背诵和默记。及时联系老师,馈信息。
5、每周一次综合测试,及时讲评。
幂函数的课件 篇12
尊敬的各位评委、老师:
大家好!今天我将为大家呈现《对数函数》的说课。
一、教材地位
《对数函数》在高中数学课程中占据关键地位。它是在学生掌握指数函数、对数运算的基础上进行学习的。对数函数作为一种重要的函数模型,在数学及其他学科领域有着广泛的应用,如在科学计算、经济学等方面。
二、学生情况
学生在之前的学习中,积累了一定的函数学习经验,对函数的研究方法有了初步认识。然而,对数函数的抽象性和其独特的性质,可能会给学生的理解带来挑战。尤其是对数函数与指数函数之间的相互转化关系,需要学生深入理解。
三、教学目标设定
知识目标:学生能够准确阐述对数函数的定义,熟练掌握对数函数的图象特征,理解并能运用对数函数的单调性、奇偶性等性质。
能力目标:通过对对数函数的探究,培养学生的数学抽象能力、逻辑推理能力以及数学运算能力。
素养目标:让学生体会数学知识之间的内在联系,培养学生的数学建模素养和创新思维。
四、教学策略
情境教学法:创设实际生活情境,如地震震级的'测量与对数函数的关系,让学生感受到对数函数的实用性,激发学习兴趣。
小组合作法:组织学生分组讨论对数函数的性质,促进学生之间的思想交流,培养团队合作精神。
多媒体辅助教学:利用函数图象绘制软件,直观展示对数函数图象的变化规律,帮助学生理解。
五、教学流程
情境导入:展示与对数函数相关的实际问题,引出对数函数的概念。
概念讲解:剖析对数函数的定义,强调其定义域、值域等关键要素。
图象绘制与性质探究:引导学生借助多媒体工具绘制对数函数图象,观察图象变化,总结性质。
互动环节:组织小组讨论,探讨对数函数与指数函数的关系。
例题示范与练习巩固:通过典型例题讲解,让学生掌握解题方法,然后进行课堂练习,教师及时反馈。
课堂总结:回顾本节课重点内容,强化学生记忆。
作业布置:布置分层作业,满足不同层次学生的需求。
以上是我的说课内容,希望能得到大家的指导和建议。谢谢!
幂函数的课件 篇13
各位评委、老师们:
大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:
一、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
二、教学目标设计:
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。
2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
三、教学重点、难点分析
1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点
2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。
四、说教法、学法
在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。
说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:
比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。
观察分析:让学生要学会观察问题,分析问题和解决新问题
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。
五、教学媒体设计:
根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:
教师利用多媒体准备的素材:
①对数函数的图像
②例题和习题
③与本节课相关的结论
设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。
六、教学过程的设计:
环节一:引入课题,初步感知概念
1.知识回顾
1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?
设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.
2)对数的定义
设计意图:为讲解对数函数时对底数的限制做准备.
2.教学情景
由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数
环节二:新知探究,构建概念
(一)对数函数的概念
1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).
学生思考问题:
①为什么对数函数概念中规定
②对数函数对底数的.限制:
设计意图:为学习对数函数的定义,图像和性质做铺垫
(二)对数函数的图象和性质
教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。
探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)
环节三、典例分析,深化知识、
例1:
解:(略)
设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:
环节四、归纳小结,强化思想
本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。
环节五、作业布置(加深对知识的理解)
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
幂函数的课件 篇14
一、教材分析
(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。同时为今后学习一元二次不等式及二次函数打下基础。
(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:
①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。
(三)、教学重难点及关键
介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。
二、学生分析
任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。这就要求我们教师必须从学生的认知结构和心理特征出发。九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。使得他们很快就能融入课堂,接受知识也事半功倍。当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。从而激发学生学习的兴趣,促进学生个性的形成和发展。要让学生成为课堂真正的主人,变厌学为乐学。
三、教法与学法分析
①教法分析:本节课坚持“以学生为主体,教师为主导”原则。为了使学生在知识上和能力上都有所提高,本节课我采用探究式教学法和合作交流法。首先是探究式教学法,根据学生的认知规律,对学生创设合适的`学习情景,引导学生自主探索、积极参与课堂活动,其目的在于培养学生探索精神以及学生学习探究方法。其次是合作交流法,就是让学生共同讨论,有浅入深、有特殊到一般的提出问题,引导学生自主探索,合作交流,从而有效激发学生学习的积极性。
②学法分析:在教师的组织引导下,采用自主探索,合作交流研讨式学习方法,让学生思考问题、获取知识、掌握方法,借此培养学生的动手、动脑、动口的能力,使学生真正的成为学习中的主体。
四、教学过程设计
为了体现在教学中循序渐进,讲练结合的特点,本节课安排了情景引入、新课学习、
归纳小结、巩固练习、课堂小结、课后作业六个环节组成。
(一)、情景引入
给出3个数据x,6,3,请同学们自己编一道方程,并求出这个方程的解。这个设计在于引导学生回忆复习已经学过的一元一次方程。通过自己编方程的形式引起学生们的注意,同时也激发了学生学习的兴趣。紧接着我又出示这样三个数据:6,3,x2,你还能编一个方程出来吗?因此在一个有趣的问题中引入本节课《一元二次方程》。从而激发学生的求知欲望,顺利地进入新课。
(二)、新课学习
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例:
一张矩形的铁片,长100厘米,宽50厘米。在他的四角各切去一个同样地正方形,然后将四角突起部分折起就能制作一个无盖的方盒。如果要制作的无盖方盒的底面积为3600平方厘米,那么铁片各角应切去多大的正方形?
应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,同时突破难点之一的“由实际问题列出一元二次方程”。通过上述情景分析,让学生小组讨论,然后列出方程。
英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是就定义教定义。因此,我在课本的基础上,又补充第2个实例:
要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛。比赛组织者应邀请多少个队参加比赛?
这里我设计了三个问题帮助学生理解:①全部比赛共有多少场?
②如果邀请x个队比赛,每个队都要与其它队共赛多少场?③甲对与乙队,乙队与甲对的比赛是同一场比赛,所以全部比赛共有多少场呢?小组讨论,并列出方程。
《新教学理念》指出:教师要把课堂还给学生,让学生成为课堂上真正的主人。同时用提问的方式引导学生,也让学生更有兴趣的去分析和发现问题,从而解决问题。
(三)归纳小结
在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可
以化为“ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。
(四)巩固练习
为了使学生进一步明确一元二次方程的概念,我出示以下练习。判断下列各式是否是一元二次方程:
①x2+2x-y=3
②mn+3=0
③a2=4
④13x2+2x+1=0
我让学生巩固练习,在巩固中提高。从学生心理条件来讲,喜欢参与一些有挑战性的活动,而老师又希望学生达到一定的熟练程度。因此通过这组练习加深学生对一元二次方程的理解和掌握。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。
紧接着,我遵循巩固与发展想结合的原则,先引导学生学习课本例题,接着进行赏析。这个例题已经明确让我们“将方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数”。其实,即使课本没有这样指明,或者说,课本安排这道例题的用意,就是让学生养成将一元二次方程化为一般形式后再进行研究的良好习惯。因为,所谓的“二次项、一次项和常数项”都是在一元二次方程化为一般形式后的项。
接着,就是练习了。在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。
(五)课堂小结
最后我再引导学生做如下思考:
(1)这节课你学会了什么数学知识?
(2)这节课你又学会了什么数学方法?
(3)通过这节课的学习,你觉得对你又有什么帮助呢?
一节有趣的数学课,就是要照顾到每一个层次的学生,让每一个人都有一种成就感。因此整个过程我让学生同桌之间进行,以培养学生的归纳、概括的能力。
(六)布置作业
考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做、思考题三类。以便同时兼顾到学有困难和学有余力的学生。
-
想了解更多幂函数的课件的资讯,请访问:幂函数的课件
本文来源:http://www.gsi8.com/huibaoziliao/77243.html